49 research outputs found

    High-intensity interval exercise training before abdominal aortic aneurysm repair ( HIT-AAA): protocol for a randomised controlled feasibility trial

    Get PDF
    Introduction In patients with large abdominal aortic aneurysm (AAA), open surgical or endovascular aneurysm repair procedures are often used to minimise the risk of aneurysm-related rupture and death; however, aneurysm repair itself carries a high risk. Low cardiopulmonary fitness is associated with an increased risk of early post-operative complications and death following elective AAA repair. Therefore, fitness should be enhanced before aneurysm repair. High-intensity interval exercise training (HIT) is a potent, time-efficient strategy for enhancing cardiopulmonary fitness. Here, we describe a feasibility study for a definitive trial of a pre-operative HIT intervention to improve post-operative outcomes in patients undergoing elective AAA repair. Methods and analysis A minimum of 50 patients awaiting elective repair of a 5.5–7.0 cm infrarenal AAA will be allocated by minimisation to HIT or usual care control in a 1:1 ratio. The patients allocated to HIT will complete three hospital-based exercise sessions per week, for 4 weeks. Each session will include 2 or 4 min of high-intensity stationary cycling followed by the same duration of easy cycling or passive recovery, repeated until a total of 16 min of high-intensity exercise is accumulated. Outcomes to be assessed before randomisation and 24–48 h before aneurysm repair include cardiopulmonary fitness, maximum AAA diameter and health-related quality of life. In the post-operative period, we will record destination (ward or critical care unit), organ-specific morbidity, mortality and the durations of critical care and hospital stay. Twelve weeks after the discharge, participants will be interviewed to reassess quality of life and determine post-discharge healthcare utilisation. The costs associated with the exercise intervention and healthcare utilisation will be calculated. Ethics and dissemination Ethics approval was secured through Sunderland Research Ethics Committee. The findings of the trial will be disseminated through peer-reviewed journals, and national and international presentations

    Risk stratification by pre-operative cardiopulmonary exercise testing improves outcomes following elective abdominal aortic aneurysm surgery : a cohort study

    Get PDF
    Background: In 2009, the NHS evidence adoption center and National Institute for Health and Care Excellence (NICE) published a review of the use of endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms (AAAs). They recommended the development of a risk-assessment tool to help identify AAA patients with greater or lesser risk of operative mortality and to contribute to mortality prediction. A low anaerobic threshold (AT), which is a reliable, objective measure of pre-operative cardiorespiratory fitness, as determined by pre-operative cardiopulmonary exercise testing (CPET) is associated with poor surgical outcomes for major abdominal surgery. We aimed to assess the impact of a CPET-based risk-stratification strategy upon perioperative mortality, length of stay and non-operative costs for elective (open and endovascular) infra-renal AAA patients. Methods: A retrospective cohort study was undertaken. Pre-operative CPET-based selection for elective surgical intervention was introduced in 2007. An anonymized cohort of 230 consecutive infra-renal AAA patients (2007 to 2011) was studied. A historical control group of 128 consecutive infra-renal AAA patients (2003 to 2007) was identified for comparison. Comparative analysis of demographic and outcome data for CPET-pass (AT ≥ 11 ml/kg/min), CPET-fail (AT < 11 ml/kg/min) and CPET-submaximal (no AT generated) subgroups with control subjects was performed. Primary outcomes included 30-day mortality, survival and length of stay (LOS); secondary outcomes were non-operative inpatient costs. Results: Of 230 subjects, 188 underwent CPET: CPET-pass n = 131, CPET-fail n = 35 and CPET-submaximal n = 22. When compared to the controls, CPET-pass patients exhibited reduced median total LOS (10 vs 13 days for open surgery, n = 74, P < 0.01 and 4 vs 6 days for EVAR, n = 29, P < 0.05), intensive therapy unit requirement (3 vs 4 days for open repair only, P < 0.001), non-operative costs (£5,387 vs £9,634 for open repair, P < 0.001) and perioperative mortality (2.7% vs 12.6% (odds ratio: 0.19) for open repair only, P < 0.05). CPET-stratified (open/endovascular) patients exhibited a mid-term survival benefit (P < 0.05). Conclusion: In this retrospective cohort study, a pre-operative AT > 11 ml/kg/min was associated with reduced perioperative mortality (open cases only), LOS, survival and inpatient costs (open and endovascular repair) for elective infra-renal AAA surgery

    The physiological impact of high?intensity interval training in octogenarians with comorbidities

    Get PDF
    BackgroundDeclines in cardiorespiratory fitness (CRF) and fat-free mass (FFM) with age are linked to mortality, morbidity and poor quality of life. High-intensity interval training (HIIT) has been shown to improve CRF and FFM in many groups, but its efficacy in the very old, in whom comorbidities are present is undefined. We aimed to assess the efficacy of and physiological/metabolic responses to HIIT, in a cohort of octogenarians with comorbidities (e.g. hypertension and osteoarthritis).MethodsTwenty-eight volunteers (18 men, 10 women, 81.2 ± 0.6 years, 27.1 ± 0.6 kg·m−2) with American Society of Anaesthesiology (ASA) Grade 2–3 status each completed 4 weeks (12 sessions) HIIT after a control period of equal duration. Before and after each 4 week period, subjects underwent body composition assessments and cardiopulmonary exercise testing. Quadriceps muscle biopsies (m. vastus lateralis) were taken to quantify anabolic signalling, mitochondrial oxidative phosphorylation, and cumulative muscle protein synthesis (MPS) over 4-weeks.ResultsIn comorbid octogenarians, HIIT elicited improvements in CRF (anaerobic threshold: +1.2 ± 0.4 ml·kg−1·min−1, P = 0.001). HIIT also augmented total FFM (47.2 ± 1.4 to 47.6 ± 1.3 kg, P = 0.04), while decreasing total fat mass (24.8 ± 1.3 to 24 ± 1.2 kg, P = 0.0002) and body fat percentage (33.1 ± 1.5 to 32.1 ± 1.4%, P = 0.0008). Mechanistically, mitochondrial oxidative phosphorylation capacity increased after HIIT (i.e. citrate synthase activity: 52.4 ± 4 to 67.9 ± 5.1 nmol·min−1·mg−1, P = 0.005; membrane protein complexes (C): C-II, 1.4-fold increase, P = 0.002; C-III, 1.2-fold increase, P = 0.03), as did rates of MPS (1.3 ± 0.1 to 1.5 ± 0.1%·day−1, P = 0.03). The increase in MPS was supported by up-regulated phosphorylation of anabolic signalling proteins (e.g. AKT, p70S6K, and 4E-BP1; all P < 0.05). There were no changes in any of these parameters during the control period. No adverse events were reported throughout the study.ConclusionsThe HIIT enhances skeletal muscle mass and CRF in octogenarians with disease, with up-regulation of MPS and mitochondrial capacity likely underlying these improvements. HIIT can be safely delivered to octogenarians with disease and is an effective, time-efficient intervention to improve muscle mass and physical function in a short time frame

    Digital Computer Simulation of a Reciprocating Compressor-A Simplified Analysis

    Get PDF
    corecore