19 research outputs found

    Is CD19-directed chimeric antigen receptor T cell therapy a smart strategy to combat central nervous system lymphoma?

    Get PDF
    Primary central nervous system lymphoma (PCNSL) is a rare form and aggressive type of diffuse large B-cell lymphoma (DLBCL) that occurs in both immunocompetent and immunocompromised adults. While adding rituximab to chemotherapeutic regimens resulted in dramatic improvement in both progression-free survival and overall survival in patients with non-central nervous system (CNS) DLBCL, the outcomes of PCNSL are generally poor due to the immune-privileged tumor microenvironment or suboptimal delivery of systemic agents into tumor tissues. Therefore, more effective therapy for PCNSL generally requires systemic therapy with sufficient CNS penetration, including high-dose intravenous methotrexate with rituximab or high-dose chemotherapy followed by autologous stem cell transplantation. However, overall survival is usually inferior in comparison to non-CNS lymphomas, and treatment options are limited for elderly patients or patients with relapsed/refractory disease. Chimeric antigen receptor T (CAR-T) cell therapy has emerged as a cutting-edge cancer therapy, which led to recent FDA approvals for patients with B-cell malignancies and multiple myeloma. Although CAR-T cell therapy in patients with PCNSL demonstrated promising results without significant toxicities in some small cohorts, most cases of PCNSL are excluded from the pivotal CAR-T cell trials due to the concerns of neurotoxicity after CAR-T cell infusion. In this review, we will provide an overview of PCNSL and highlight current approaches, resistance mechanisms, and future perspectives of CAR-T cell therapy in patients with PCNSL

    Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm

    Get PDF
    Rice (Oryza sativa) allelic sugary1 (sug1) mutants defective in isoamylase 1 (ISA1) accumulate varying levels of starch and phytoglycogen in their endosperm, and the activity of a pullulanase-type of a debranching enzyme (PUL) was found to correlate closely with the severity of the sug1 phenotype. Thus, three PUL-deficient mutants were generated to investigate the function of PUL in starch biosynthesis. The reduction of PUL activity had no pleiotropic effects on the other enzymes involved in starch biosynthesis. The short chains (DP ≤13) of amylopectin in PUL mutants were increased compared with that of the wild type, but the extent of the changes was much smaller than that of sug1 mutants. The α-glucan composition [amylose, amylopectin, water-soluble polysaccharide (WSP)] and the structure of the starch components (amylose and amylopectin) of the PUL mutants were essentially the same, although the average chain length of the B2-3 chains of amylopectin in the PUL mutant was ∼3 residues longer than that of the wild type. The double mutants between the PUL-null and mild sug1 mutants still retained starch in the outer layer of endosperm tissue, while the amounts of WSP and short chains (DP ≤7) of amylopectin were higher than those of the sug1 mutant; this indicates that the PUL function partially overlaps with that of ISA1 and its deficiency has a much smaller effect on the synthesis of amylopectin than ISA1 deficiency and the variation of the sug1 phenotype is not significantly dependent on the PUL activities

    Identification of the novel deletion-type PML-RARA mutation associated with the retinoic acid resistance in acute promyelocytic leukemia.

    No full text
    All-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are essential for acute promyelocytic leukemia (APL) treatment. It has been reported that mutations in PML-RARA confer resistance to ATRA and ATO, and are associated with poor prognosis. Although most PML-RARA mutations were point mutations, we identified a novel seven amino acid deletion mutation (p.K227_T233del) in the RARA region of PML-RARA in a refractory APL patient. Here, we analyzed the evolution of the mutated clone and demonstrated the resistance of the mutated clone to retinoic acid (RA). Mutation analysis of PML-RARA was performed using samples from a chemotherapy- and ATRA-resistant APL patient, and the frequencies of mutated PML-RARA transcript were analyzed by targeted deep sequencing. To clarify the biological significance of the identified PML-RARA mutations, we analyzed the ATRA-induced differentiation and PML nuclear body formation in mutant PML-RARA-transduced HL-60 cells. At molecular relapse, the p.K227_T233del deletion and the p.R217S point-mutation in the RARA region of PML-RARA were identified, and their frequencies increased after re-induction therapy with another type of retinoiec acid (RA), tamibarotene. In deletion PML-RARA-transduced cells, the CD11b expression levels and NBT reducing ability were significantly decreased compared with control cells and the formation of PML nuclear bodies was rarely observed after RA treatment. These results indicate that this deletion mutation was closely associated with the disease progression during RA treatment

    High incidence of extensive chronic graft-versus-host disease in patients with the REG3A rs7588571 non-GG genotype.

    No full text
    Regenerating islet-derived protein 3 alpha (REG3A) is a biomarker of lower gastrointestinal graft-versus-host disease (GVHD); however, the biological role of REG3A in the pathophysiology of GVHD is not understood. Here, we examined the association between a single nucleotide polymorphism in the REG3A gene, rs7588571, which is located upstream and within 2 kb of the REG3A gene, and transplant outcomes including the incidence of GVHD. The study population consisted of 126 adult Japanese patients who had undergone bone marrow transplantation from a HLA-matched sibling. There was no association between rs7588571 polymorphism and the incidence of acute GVHD. However, a significantly higher incidence of extensive chronic GVHD was observed in patients with the rs7588571 non-GG genotype than in those with the GG genotype (Odds ratio 2.6; 95% confidence interval, 1.1-6.0; P = 0.029). Semi-quantitative reverse transcription PCR demonstrated that the rs7588571 non-GG genotype exhibited a significantly lower REG3A mRNA expression level than the GG genotype (P = 0.032), and Western blot analysis demonstrated that the rs7588571 non-GG genotype exhibited a trend toward lower REG3A protein expression level than the GG genotype (P = 0.053). Since REG proteins have several activities that function to control intestinal microbiota, and since intestinal dysbiosis is in part responsible for the development of GVHD, our findings lead to the novel concept that REG3A could have some protective effect in the pathogenesis of GVHD through the regulation of gut microbiota
    corecore