130 research outputs found

    Concurrent Connection of Embryonic Chick Heart Using a Microfluidic Device for Organ-Explant-Chip

    Get PDF
    AbstractWe propose a concurrent microvascular connection method called suction-induced vascular fixation (SVF) method for the achievement of Organ-Explant-Chip which is a biologically-designed simulator having biological materials such as cells, tissues, and organs. The advantages of proposed method with using a microfluidic device are as follows: (1) operation of flexible objects (blood vessels), (2) alignment the blood vessels concurrently, and (3) reduction of the DOFs of the blood vessels. From the experimental results, we confirmed that four cardiovascular of the explanted embryonic chick heart can be induced into the fabricated microfluidic device concurrently. We have also succeeded in construction of hybrid circulatory system between artifacts and embryonic chick heart, and monitoring the response of the heart of chick embryo by supplying the culture medium

    Development of a solution model to correlate solubilities of inorganic compounds in water vapor under high temperatures and pressures

    Get PDF
    金沢大学大学院自然科学研究科生産プロセスA solution model, based on the regular solution theory coupled with Flory-Huggins entropy term, was developed for the calculation of solubilities of inorganic compounds in water vapor under high temperatures and pressures. The solubilities of sodium chloride (NaCl), potassium hydroxide (KOH), sodium sulfate (Na2SO4), lead oxide (PbO), silicon oxide (SiO2), lithium nitrate (LiNO3), sodium nitrate (NaNO3) and potassium nitrate (KNO3) were correlated by optimizing internal energies and molar volumes of inorganic compounds which give their solubility parameters. © 2001 Elsevier Science B.V. All rights reserved

    Measurement and correlation for solubilities of alkali metal chlorides in water vapor at high temperature and pressure

    Get PDF
    金沢大学大学院自然科学研究科生産プロセスA flow type apparatus was designed and constructed to measure the solubilities of salts in water vapor at high temperature and pressure. The apparatus was equipped with an additional pure water line to prevent the clogging by precipitated solid salts at the outlet of an equilibrium cell. The solubilities of sodium chloride and potassium chloride in water vapor were measured at 623-673 K and 9.0-12.0 MPa. In order to verify the soundness of this method and the performance of the apparatus, the experimental results for the solubilities of sodium chloride at 673 K were compared with the literature data. The present data are in good agreement with the literature data. The solubilities of sodium chloride are similar to those of potassium chloride at the same temperatures and pressures. The isobaric solubilities decrease with increasing temperature at the experimental pressure range. The experimental results of solubilities were correlated by a solution model. The molar volumes and the energy parameters of salts were treated as adjustable parameters and were optimized with the present and literature data. The adjusted energy parameters for salts can be related to a linear function of the temperature. The correlated results show good agreement with the experimental data. © 2004 Elsevier B.V. All rights reserved

    Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    Get PDF
    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure

    Solar System Exploration Sciences by EQUULEUS on SLS EM-1 and Science Instruments Development Status

    Get PDF
    EQUULEUS is a spacecraft to explore the cislunar region including the Earth-Moon Lagrange point L2 (EML2) and will be launched by NASA’s SLS EM-1 rocket. Although the size of EQUULEUS is only 6U, the spacecraft carries three different science instruments. By using these instruments, the spacecraft will demonstrate three missions for solar system exploration science during and after the flight to EML2; imaging of the plasmasphere around the earth, observation of space dust flux in the cislunar region, and observation of lunar impact flashes at the far side of the moon. The developments and verifications of the flight models of these science instruments were completed by the end of 2018, and we started flight model integration and testing. This paper introduces the details of the scientific objectives, design results and development statuses of the instruments. In addition, results of the integration and pre-flight tests are also described
    corecore