614 research outputs found

    Biomedical signal identification and analysis

    Get PDF
    In the article there have been presented methods of measuring and analysis biological signals, which may be used as signals control mechanical system. Among others, ther have been decribed the usage of EEG (electroencephalographic signal). Like in the case of other signals, the analysis of bio-medical signals most often resolves itself to the frequency analysis of their content with the help of Fourier transformation, and their processing the most often has a form of frequency filtering; in other words, removing from a signal its components with defined frequencies, for example, interferences. The researches have two parts. In the first part date was generated in Lab View program, and next the analysis was done (it was an example of EEG signal). In the next part the EEG signal was measured using 32 channels apertures and next real signal was analyzed using Lab View

    Regenerative potential of the product CardioCell derived from the Wharton's jelly mesenchymal stem cells for treating hindlimb oschemia

    Get PDF
    In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality in regenerative medicine. They hold great promise for treating civilization-wide diseases, including cardiovascular diseases, such as acute myocardial infarction and critical limb ischemia. MSCs isolated from Wharton’s jelly (WJ-MSCs) may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits for patients. The efficacy of WJ-MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Ischemic limb disease is caused by insufficient nutrient and oxygen supplies resulting from damaged peripheral arteries. The lack of nutrients and oxygen causes severe tissue damage in the limb, thereby resulting in severe morbidities and mortality. The therapeutic effects of the conventional treatments are still not sufficient. Cell transplantations in small animal model (mice) are vital for deciphering the mechanisms of MSCs’ action in muscle regeneration. The stimulation of angiogenesis is a promising strategy for the treatment of ischemic limbs, restoring blood supply for the ischemic region. In the present study, we focus on the therapeutic properties of the human WJ-MSCs derived product, Cardio. We investigated the role of CardioCell in promoting angiogenesis and relieving hindlimb ischemia. Our results confirm the healing effect of CardioCell and strongly support the use of the WJ-MSCs in regenerative medicine

    AFM-based analysis of Wharton's jelly mesenchymal stem cells

    Get PDF
    Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are multipotent stem cells that can be used in regenerative medicine. However, to reach the high therapeutic efficacy of WJ-MSCs, it is necessary to obtain a large amount of MSCs, which requires their extensive in vitro culturing. Numerous studies have shown that in vitro expansion of MSCs can lead to changes in cell behavior; cells lose their ability to proliferate, differentiate and migrate. One of the important measures of cells’ migration potential is their elasticity, determined by atomic force microscopy (AFM) and quantified by Young’s modulus. This work describes the elasticity of WJ-MSCs during in vitro cultivation. To identify the properties that enable transmigration, the deformability of WJ-MSCs that were able to migrate across the endothelial monolayer or Matrigel was analyzed by AFM. We showed that WJ-MSCs displayed differences in deformability during in vitro cultivation. This phenomenon seems to be strongly correlated with the organization of F-actin and reflects the changes characteristic for stem cell maturation. Furthermore, the results confirm the relationship between the deformability of WJ-MSCs and their migration potential and suggest the use of Young’s modulus as one of the measures of competency of MSCs with respect to their possible use in therapy

    Properties of chemically oxidized kininogens

    Get PDF
    Kininogens are multifunctional proteins involved in a variety of regulatory processes including the kinin-formation cascade, blood coagulation, fibrynolysis, inhibition of cysteine proteinases etc. A working hypothesis of this work was that the properties of kininogens may be altered by oxidation of their methionine residues by reactive oxygen species that are released at the inflammatory foci during phagocytosis of pathogen particles by recruited neutrophil cells. Two methionine-specific oxidizing reagents, N-chlorosuccinimide (NCS) and chloramine-T (CT), were used to oxidize the high molecular mass (HK) and low molecular mass (LK) forms of human kininogen. A nearly complete conversion of methionine residues to methionine sulfoxide residues in the modified proteins was determined by amino acid analysis. Production of kinins from oxidized kininogens by plasma and tissue kallikreins was significantly lower (by at least 70%) than that from native kininogens. This quenching effect on kinin release could primarily be assigned to the modification of the critical Met-361 residue adjacent to the internal kinin sequence in kininogen. However, virtually no kinin could be formed by human plasma kallikrein from NCS-modified HK. This observation suggests involvement of other structural effects detrimental for kinin production. Indeed, NCS-oxidized HK was unable to bind (pre)kallikrein, probably due to the modification of methionine and/or tryptophan residues at the region on the kininogen molecule responsible for the (pro)enzyme binding. Tests on papain inhibition by native and oxidized kininogens indicated that the inhibitory activity of kininogens against cysteine proteinases is essentially insensitive to oxidation

    NiW/ZrO2Ni-W/ZrO_2 nanocomposites obtained by ultrasonic DC electrodeposition

    Get PDF
    Composite coatings consisting of a nanocrystalline Ni–W alloy matrix reinforced with ZrO2 particles (average size of 50 nm) were synthesized by electrochemical deposition assisted by an external ultrasonic field. The Ni–W/ZrO2 coatings were deposited from aqueous sulphate–citrate electrolytes containing zirconia nanopowder in suspension on steel substrates in a system with a rotating disk electrode (RDE). The influence of relevant processing parameters (i.e., concentration of zirconia powder in plating bath, current density, hydrodynamic conditions, ultrasonic field frequency) on the composite characteristics was discussed. Based on micromechanical (microhardness, Young’s modulus) and microstructural (morphology, phase composition, crystallite size) properties of the coatings, the conditions for electrodeposition of crack-free, homogeneous Ni–W/ZrO2 nanocomposites with enhanced functional properties have been developed

    Elektroosadzanie i właściwości nanokrystalicznych stopów na osnowie niklu z trudnotopliwym metalem z kąpieli cytrynianowych

    Get PDF
    Głównym celem pracy było ustalenie optymalnych warunków procesu elektroosadzania metalicznych powłok Ni-Mo o podwyższonych właściwościach mikromechanicznych. Charakteryzowane stopy zostały osadzone na podłożu ze stali ferrytycznej, w warunkach galwanostatycznych, w modelowym układzie z wirujaca elektroda dyskowa (WED), z wodnych kompleksowych roztworów cytrynianowych zawierających sole niklu i molibdenu. Określono wpływ pH elektrolitu (regulowanego przez dodatek kwasu siarkowego lub amoniaku) na zawartość molibdenu w stopie, jakość osadów, jak również wydajnosc pradowa procesu elektroosadzania. Stwierdzono, że wzrost pH jest związany ze stopniowym zwiększaniem zawartości molibdenu w powłokach. Maksymalna zawartość molibdenu uzyskano w stopach wydzielonych z kąpieli galwanicznej o pH 7, gdzie jednocześnie zaobserwowano najwyższe stężenie cytrynianowych, elektroaktywnych kompleksów molibdenu typu [MoO4(Cit)H]4?-(Cit=C6H5O3-7 ). Dla wybranej kąpieli galwanicznej o optymalnym pH badano wpływ gęstości prądu katodowego (kluczowego parametru operacyjnego, kontrolującego między innymi skład chemiczny oraz mikrostrukturę, w tym skład fazowy i rozmiar krystalitów) na właściwości mechaniczne i tribologiczne wytworzonych powłok. Wykazano, że w całym analizowanym zakresie gęstości prądu, otrzymano powłoki Ni-Mo bez siatki mikropęknięć, o dobrej adhezji do stalowego podłoża, charakteryzujące się podwyższoną twardością w zakresie 6.5 do 7.8 GPa. Ponadto, powłoki osadzane przy wyższych gęstościach prądu (powyżej 3.5 A/dm2) odznaczają się zwartą i jednorodną mikrostrukturą, a tym samym najwyższą odpornością na zużycie przez tarcie.The main aim of the present work was to determine the optimal conditions for electrodeposition of metallic Ni-Mo coatings of enhanced micromechanical properties. These alloys were electrodeposited on the ferritic steel substrate, under galvanostatic regime in a system with a rotating disk electrode (RDE), from an aqueous citrate complex solution containing nickel and molybdenum salts. The effect of the electrolyte solution pH (adjusted by sulphuric acid or ammonia) on the molybdenum content and on deposit quality as well as on the current efficiency of the electrodeposition process, has been studied. It was established that increase of bath pH is correlated with gradual increase of molybdenum content in deposits up to pH 7, where the maximum concentration of Mo(VI) electroactive citrate complex ions [MoO4(Cit)H]4- (Cit= C6H5O7-3 ) in plating bath was observed. In the selected bath of the optimum pH value, the effect of cathodic current density, as a crucial operating parameter which strongly controls the chemical composition and microstructure parameters (e.g. phase compositions, crystallite size), on the mechanical and tribological properties of the resulting coatings has been determined. It has been shown that - under all investigated current density range - crack-free, well adherent Ni-Mo coatings, characterized by microhardness of 6.5-7.8 GPa, were obtained. Alloys deposited at higher tested current densities (above 3.5 A/dm2) were characterized by compact and uniform microstructure, and thus had the highest wear and friction resistance

    Novel Mode of Trisiloxane Application Reduces Spider Mite and Aphid Infestation of Fruiting Shrub and Tree Crops

    Get PDF
    Application of pesticides leads to contamination of the natural environment, which entails the necessity to seek solutions that use substances which do not pose ecological hazards. The presented investigations tested the efficacy of a preparation containing organomodified trisiloxane and a cross-linking agent (Siltac EC) to limit the number of two-spotted spider mite (Tetranychus urticae) on the leaves of raspberry (Rubus idaeus) and blackcurrant (Ribes nigrum), as well as the numbers of green apple aphid (Aphis pomi) on apple trees (Malus domestica). The high effectiveness (more than 90%) of Siltac against spider mite on raspberry and blackcurrant leaves was rapid and persisted at least by two- three weeks after spraying. There was observed an inhibition of pest developing (i.e. significant decrease of eggs and larvae). Similar effect occurred per an apple tree shoot and the number of living apple aphids was reduced by more than 93% in comparison to untreated trees. In all experiments, the effectiveness of Siltac was similar and usually longer lasting than control pesticides. Moreover, no phytotoxicity of the tested preparation was observed during the investigations. In conclusion, on the basis of the presented results it was found that Siltac EC could be a good alternative to the currently used plant protection chemicals

    Microwave-assisted synthesis and characterization of novel chitosan-based biomaterials for pelvic organ prolapse treatment

    Get PDF
    Pelvic organ disorders affect up to one in four women in the United States. The prevalence of pelvic organ prolapse (POP) is increasing with each year, particularly in the setting of prolonged life expectancy and an aging population. Current treatment approaches, including polypropylene monofilaments are associated with numerous painful and worrisome side-effects. Therefore, scientists are looking for new solutions. A promising alternative to the current treatment is tissue engineering, which can be utilized to re-create support to the vagina and pelvic organs. Tissue engineering requires the use of three-dimensional scaffolds, derived from biocompatible materials. Chitosan is a natural polymer, obtained from shellfish exoskeletons. It is known for its biodegradability, lack of cytotoxicity and non-pyrogenicity. Due to the presence of free hydroxyl and amino groups, it may undergo various modifications. In this paper, we describe a new type of chitosan-based biomaterials, which can be used as a new alternative scaffold that may provide support to prolapse organs. The chitosan scaffold was obtained under microwave radiation using multifunctional amino and organic acids. We discuss the scaffold's characteristics, with an emphasis on its chemical structure and morphology. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed cross-linking processes with preservation of free amino groups. Moreover, mechanical durability, the stability and swelling ability of the scaffolds in a simulated body fluid were investigated. All of the prepared scaffolds demonstrated very good antioxidant activity and biodegradability. Importantly, the biocompatibility of chitosan scaffolds was examined on human vaginal VK2/E6E7 cell line. No evidence of toxicity was documented, and the cells maintained their presence on the studied materials. These results allude to the lack of toxicity of the scaffolds, and indicate that chitosan-based scaffold should be further investigated in in vivo studies as they may be a promising alternative treatment to pelvic organ prolapse.Web of Science70349147

    SNAIL promotes metastatic behavior of rhabdomyosarcoma by increasing EZRIN and AKT expression and regulating microRNA networks

    Get PDF
    Rhabdomyosarcoma (RMS) is a predominant soft tissue tumor in children and adolescents. For high-grade RMS with metastatic involvement, the 3-year overall survival rate is only 25 to 30%. Thus, understanding the regulatory mechanisms involved in promoting the metastasis of RMS is important. Here, we demonstrate for the first time that the SNAIL transcription factor regulates the metastatic behavior of RMS both in vitro and in vivo. SNAIL upregulates the protein expression of EZRIN and AKT, known to promote metastatic behavior, by direct interaction with their promoters. Our data suggest that SNAIL promotes RMS cell motility, invasion and chemotaxis towards the prometastatic factors: HGF and SDF-1 by regulating RHO, AKT and GSK3β activity. In addition, miRNA transcriptome analysis revealed that SNAIL-miRNA axis regulates processes associated with actin cytoskeleton reorganization. Our data show a novel role of SNAIL in regulating RMS cell metastasis that may also be important in other mesenchymal tumor types and clearly suggests SNAIL as a promising new target for future RMS therapies
    corecore