5 research outputs found

    Das Stigma von Suchterkrankungen verstehen und überwinden = Understanding and overcoming the stigma of substance use disorders

    Get PDF
    Understanding and overcoming the stigma of substance use disorders Abstract. Stigma does harm to individuals with substance use disorders (SUD), and it increases the burden of SUDs. It presents a barrier to help seeking, results in lower treatment quality and increases social and health related consequences of SUDs. This applies to both the individual, societal and economic consequences of substance use. Moreover, stigmatizing persons with addictions is an ethical problem, since it discriminates against a certain group and infringes on their human dignity. Dealing with substance use disorders without stigma is possible. Eliminating the stigma of SUDs means finding better ways to deal with SUDs and to make these ways available to everyone. Instead of devaluing, marginalizing and disciplining persons with SUD, empowerment and appreciation need to be at the core of dealing with SUD in prevention, treatment and every day life

    Wizja powojennych Niemiec Koła z Krzyżowej Helmuta Jamesa von Moltke.

    No full text

    Nonculture-based identification of bacteria in milk by protein fingerprinting

    No full text
    Traditional methods for bacterial identification include Gram staining, culturing, and biochemical assays for phenotypic characterization of the causative organism. These methods can be time-consuming because they require in vitro cultivation of the microorganisms. Recently, however, it has become possible to obtain chemical profiles for lipids, peptides, and proteins that are present in an intact organism, particularly now that new developments have been made for the efficient ionization of biomolecules. MS has therefore become the state-of-the-art technology for microorganism identification in microbiological clinical diagnosis. Here, we introduce an innovative sample preparation method for nonculture-based identification of bacteria in milk. The technique detects characteristic profiles of intact proteins (mostly ribosomal) with the recently introduced MALDI SepsityperTM Kit followed by MALDI-MS. In combination with a dedicated bioinformatics software tool for databank matching, the method allows for almost real-time and reliable genus and species identification. We demonstrate the sensitivity of this protocol by experimentally contaminating pasteurized and homogenized whole milk samples with bacterial loads of 10(3)-10(8) colony-forming units (cfu) of laboratory strains of Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. For milk samples contaminated with a lower bacterial load (104 cfu mL-1), bacterial identification could be performed after initial incubation at 37 degrees C for 4 h. The sensitivity of the method may be influenced by the bacterial species and count, and therefore, it must be optimized for the specific application. The proposed use of protein markers for nonculture-based bacterial identification allows for high-throughput detection of pathogens present in milk samples. This method could therefore be useful in the veterinary practice and in the dairy industry, such as for the diagnosis of subclinical mastitis and for the sanitary monitoring of raw and processed milk products.Brazilian Science foundation CNPqBrazilian Science foundation CNPqFAPESPFAPESP [09/12751-5]FINEPFINE

    Nonculture-based identification of bacteria in milk by protein fingerprinting

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Traditional methods for bacterial identification include Gram staining, culturing, and biochemical assays for phenotypic characterization of the causative organism. These methods can be time-consuming because they require in vitro cultivation of the microorganisms. Recently, however, it has become possible to obtain chemical profiles for lipids, peptides, and proteins that are present in an intact organism, particularly now that new developments have been made for the efficient ionization of biomolecules. MS has therefore become the state-of-the-art technology for microorganism identification in microbiological clinical diagnosis. Here, we introduce an innovative sample preparation method for nonculture-based identification of bacteria in milk. The technique detects characteristic profiles of intact proteins (mostly ribosomal) with the recently introduced MALDI SepsityperTM Kit followed by MALDI-MS. In combination with a dedicated bioinformatics software tool for databank matching, the method allows for almost real-time and reliable genus and species identification. We demonstrate the sensitivity of this protocol by experimentally contaminating pasteurized and homogenized whole milk samples with bacterial loads of 10(3)-10(8) colony-forming units (cfu) of laboratory strains of Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. For milk samples contaminated with a lower bacterial load (104 cfu mL-1), bacterial identification could be performed after initial incubation at 37 degrees C for 4 h. The sensitivity of the method may be influenced by the bacterial species and count, and therefore, it must be optimized for the specific application. The proposed use of protein markers for nonculture-based bacterial identification allows for high-throughput detection of pathogens present in milk samples. This method could therefore be useful in the veterinary practice and in the dairy industry, such as for the diagnosis of subclinical mastitis and for the sanitary monitoring of raw and processed milk products.121727392745Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FINEPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore