599 research outputs found

    Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass

    Full text link
    We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with Nf=2N_f=2 flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are gSu=5.20(42)(15)(12)g_S^u = 5.20(42)(15)(12), gSd=4.27(26)(15)(12)g_S^d = 4.27(26)(15)(12), gSs=0.33(7)(1)(4)g_S^s=0.33(7)(1)(4), gSc=0.062(13)(3)(5)g_S^c=0.062(13)(3)(5) and for the tensor charges gTu=0.782(16)(2)(13)g_T^u = 0.782(16)(2)(13), gTd=−0.219(10)(2)(13)g_T^d = -0.219(10)(2)(13), gTs=−0.00319(69)(2)(22)g_T^s=-0.00319(69)(2)(22), gTc=−0.00263(269)(2)(37)g_T^c=-0.00263(269)(2)(37) in the MS‾\overline{\rm MS} scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states.Comment: 20 pages and 13 figure

    Isospin-0 ππ\pi\pi s-wave scattering length from twisted mass lattice QCD

    Full text link
    We present results for the isospin-0 ππ\pi\pi s-wave scattering length calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge configurations. We use three Nf=2N_f = 2 ensembles with unitary (valence) pion mass at its physical value (250∼\simMeV), at 240∼\simMeV (320∼\simMeV) and at 330∼\simMeV (400∼\simMeV), respectively. By using the stochastic Laplacian Heaviside quark smearing method, all quark propagation diagrams contributing to the isospin-0 ππ\pi\pi correlation function are computed with sufficient precision. The chiral extrapolation is performed to obtain the scattering length at the physical pion mass. Our result Mπa0I=0=0.198(9)(6)M_\pi a^\mathrm{I=0}_0 = 0.198(9)(6) agrees reasonably well with various experimental measurements and theoretical predictions. Since we only use one lattice spacing, certain systematics uncertainties, especially those arising from unitary breaking, are not controlled in our result.Comment: 21 pages, 5 figures, 6 table

    Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Get PDF
    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter
    • …
    corecore