599 research outputs found
Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass
We present results on the light, strange and charm nucleon scalar and tensor
charges from lattice QCD, using simulations with flavors of twisted
mass Clover-improved fermions with a physical value of the pion mass. Both
connected and disconnected contributions are included, enabling us to extract
the isoscalar, strange and charm charges for the first time directly at the
physical point. Furthermore, the renormalization is computed non-perturbatively
for both isovector and isoscalar quantities. We investigate excited state
effects by analyzing several sink-source time separations and by employing a
set of methods to probe ground state dominance. Our final results for the
scalar charges are , ,
, and for the tensor charges
, ,
, in the scheme at 2~GeV. The first error is statistical, the second is the
systematic error due to the renormalization and the third the systematic
arising from possible contamination due to the excited states.Comment: 20 pages and 13 figure
Isospin-0 s-wave scattering length from twisted mass lattice QCD
We present results for the isospin-0 s-wave scattering length
calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge
configurations. We use three ensembles with unitary (valence) pion
mass at its physical value (250MeV), at 240MeV (320MeV) and
at 330MeV (400MeV), respectively. By using the stochastic Laplacian
Heaviside quark smearing method, all quark propagation diagrams contributing to
the isospin-0 correlation function are computed with sufficient
precision. The chiral extrapolation is performed to obtain the scattering
length at the physical pion mass. Our result agrees reasonably well with various experimental measurements and
theoretical predictions. Since we only use one lattice spacing, certain
systematics uncertainties, especially those arising from unitary breaking, are
not controlled in our result.Comment: 21 pages, 5 figures, 6 table
Discovery of a high state AM CVn binary in the Galactic Bulge Survey
We report on the discovery of a hydrogen-deficient compact binary (CXOGBS
J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey.
Deep archival X-ray observations constrain the X-ray positional uncertainty of
the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV
counterpart. Optical spectroscopic observations reveal the presence of broad,
shallow He i absorption lines while no sign of hydrogen is present, consistent
with a high state system. We present the optical lightcurve from Optical
Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no
evidence for outbursts; variability is present at the 0.2 mag level on
timescales ranging from hours to weeks. A modulation on a timescale of years is
also observed. A Lomb-Scargle analysis of the optical lightcurves shows two
significant periodicities at 22.90 and 23.22 min. Although the physical
interpretation is uncertain, such timescales are in line with expectations for
the orbital and superhump periods. We estimate the distance to the source to be
between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to
establish the orbital period, and to determine whether this source can serve as
a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter
- …