613 research outputs found

    Rapid Identification of Pathogens in Positive Blood Culture of Patients with Sepsis: Review and Meta-Analysis of the Performance of the Sepsityper Kit

    Get PDF
    Sepsis is one of the leading causes of deaths, and rapid identification (ID) of blood stream infection is mandatory to perform adequate antibiotic therapy. The advent of MALDI-TOF Mass Spectrometry for the rapid ID of pathogens was a major breakthrough in microbiology. Recently, this method was combined with extraction methods for pathogens directly from positive blood cultures. This review summarizes the results obtained so far with the commercial Sepsityper sample preparation kit, which is now approved for in vitro diagnostic use. Summarizing data from 21 reports, the Sepsityper kit allowed a reliable ID on the species level of 80% of 3320 positive blood culture bottles. Gram negative bacteria resulted consistently in higher ID rates (90%) compared to Gram positive bacteria (76%) or yeast (66%). No relevant misidentifications on the genus level were reported at a log(score)cut-off of 1.6. The Sepsityper kit is a simple and reproducible method which extends the MALDI-TOF technology to positive blood culture specimens and shortens the time to result by several hours or even days. In combination with antibiotic stewardship programs, this rapid ID allows a much faster optimization of antibiotic therapy in patients with sepsis compared to conventional workflows

    Hypercompact stellar clusters: morphological renditions and spectro-photometric models

    Get PDF
    Numerical relativity predicts that the coalescence of a black hole-binary causes the newly formed black hole to recoil, and evidence for such recoils has been found in the gravitational waves observed during the merger of stellar-mass black holes. Recoiling (super)massive black holes are expected to reside in hypercompact stellar clusters (HCSCs). Simulations of galaxy assembly predict that hundreds of HCSCs should be present in the halo of a Milky Way-type galaxy, and a fraction of those around the Milky Way should have magnitudes within the sensitivity limit of existing surveys. However, recoiling black holes and their HCSCs are still waiting to be securely identified. With the goal of enabling searches through recent and forthcoming databases, we improve over existing literature to produce realistic renditions of HCSCs bound to black holes with a mass of 105^{5} M_{\odot}. Including the effects of a population of blue stragglers, we simulate their appearance in Pan-STARRS and in forthcoming EuclidEuclid images. We also derive broad-band spectra and the corresponding multi-wavelength colours, finding that the great majority of the simulated HCSCs fall on the colour-colour loci defined by stars and galaxies, with their spectra resembling those of giant K-type stars. We discuss the clusters properties, search strategies, and possible interlopers.Comment: Accepted for publication on MNRAS, 17 pages, 7 figure

    Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry

    Get PDF
    An important sustainable development goal for any country is to ensure food security by producing a sufficient and safe food supply. This is the case for bovine milk where addition of non-dairy milks such as vegetables (e.g., soya or coconut) has become a common source of adulteration and fraud. Conventionally, gas chromatography techniques are used to detect key lipids (e.g., triacylglycerols) has an effective read-out of assessing milks origins and to detect foreign milks in bovine milks. However, such approach requires several sample preparation steps and a dedicated laboratory environment, precluding a high throughput process. To cope with this need, here, we aimed to develop a novel and simple method without organic solvent extractions for the detection of bovine and non-dairy milks based on lipids fingerprint by routine MALDI-TOF mass spectrometry (MS). The optimized method relies on the simple dilution of milks in water followed by MALDI-TOF MS analyses in the positive linear ion mode and using a matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid (super-DHB) solubilized at 10 mg/mL in 70% ethanol. This sensitive, inexpensive, and rapid method has potential for use in food authenticity applications

    Detection of colistin resistance in Salmonella enterica using MALDIxin test on the routine MALDI Biotyper Sirius mass spectrometer

    Get PDF
    Resistance to polymyxins in most Gram-negative bacteria arises from chemical modifications to the lipid A portion of their lipopolysaccharide (LPS) mediated by chromosomally-encoded mutations or the recently discovered plasmid-encoded mcr genes that have further complicated the landscape of colistin resistance. Currently, minimal inhibitory concentration (MIC) determination by broth microdilution, the gold standard for the detection of polymyxin resistance, is time consuming (24 hours) and challenging to perform in clinical and veterinatryveterinary laboratories. Here we present the use of the MALDIxin to detect colistin resistant Salmonella enterica using the MALDxin test on the routine matrix-assisted laser desorption ionization (MALDI) Biotyper Sirius system

    Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass

    Full text link
    We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with Nf=2N_f=2 flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are gSu=5.20(42)(15)(12)g_S^u = 5.20(42)(15)(12), gSd=4.27(26)(15)(12)g_S^d = 4.27(26)(15)(12), gSs=0.33(7)(1)(4)g_S^s=0.33(7)(1)(4), gSc=0.062(13)(3)(5)g_S^c=0.062(13)(3)(5) and for the tensor charges gTu=0.782(16)(2)(13)g_T^u = 0.782(16)(2)(13), gTd=0.219(10)(2)(13)g_T^d = -0.219(10)(2)(13), gTs=0.00319(69)(2)(22)g_T^s=-0.00319(69)(2)(22), gTc=0.00263(269)(2)(37)g_T^c=-0.00263(269)(2)(37) in the MS\overline{\rm MS} scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states.Comment: 20 pages and 13 figure

    The fast transient sky with Gaia

    Get PDF
    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known on-board and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ~2 hours timescales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to several hours. We search an area of ~23.5 square degrees on the sky, and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar type star. These classifications are based on archival data and the timescales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.Comment: 10 pages, 5 figures and 5 tables; MNRAS in pres

    Two-site study on performances of a commercially available MALDI-TOF MS-based assay for the detection of colistin resistance in Escherichia coli

    Get PDF
    Colistin is a last resort drug for the treatment of multiple drug-resistant (MDR) Gram-negative bacterial infections. Rapid methods to detect resistance are highly desirable. Here, we evaluated the performance of a commercially available MALDI-TOF MS-based assay for colistin resistance testing in Escherichia coli at two different sites. Ninety clinical E. coli isolates were provided by France and tested in Germany and UK using a MALDI-TOF MS-based colistin resistance assay. Lipid A molecules of the bacterial cell membrane were extracted using the MBT Lipid Xtract Kit™ (RUO; Bruker Daltonics, Germany). Spectra acquisition and evaluation were performed by the MBT HT LipidART Module of MBT Compass HT (RUO; Bruker Daltonics) on a MALDI Biotyper® sirius system (Bruker Daltonics) in negative ion mode. Phenotypic colistin resistance was determined by broth microdilution (MICRONAUT MIC-Strip Colistin, Bruker Daltonics) and used as a reference. Comparing the results of the MALDI-TOF MS-based colistin resistance assay with the data of the phenotypic reference method for the UK, sensitivity and specificity for the detection of colistin resistance were 97.1% (33/34) and 96.4% (53/55), respectively. Germany showed 97.1% (33/34) sensitivity and 100% (55/55) specificity for the detection of colistin resistance by MALDI-TOF MS. Applying the MBT Lipid Xtract™ Kit in combination with MALDI-TOF MS and dedicated software showed excellent performances for E. coli. Analytical and clinical validation studies must be performed to demonstrate the performance of the method as a diagnostic tool

    A first look at maximally twisted mass lattice QCD calculations at the physical point

    Full text link
    In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous Nf=2N_f = 2 results and their phenomenological values. Finally, the strategy for extending simulations to Nf=2+1+1N_f = 2 + 1 + 1 is outlined.Comment: presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
    corecore