14 research outputs found
Recommended from our members
The role of space in homeostasis and preneoplasia in stratified squamous epithelia
A major subject of study in biological research is the dynamics of stem cells in squamous epithelia. Given that most common human cancers develop from epithelia, understanding the rules of cell fate decision in these systems is key to explaining not only healthy tissue growth and maintenance but also the processes of mutagenesis and cancer. The aim of my project was to investigate the dynamics in squamous epithelial tissues both in homeostasis
and preneoplasia, using cellular automata (CA) models. Stem cell dynamics has been shown to be accurately described by a simple mathematical model, the single progenitor (SP) model. Reliable parameterisation of this model would give access to valuable quantitative information on epithelial tissue maintenance and enable investigating how mutations affect tissue dynamics. I initially identified the most appropriate method for accurately parameterising the homeostatic system.
I then sought to account for the spatial patterning of cells by implementing the SP model in two-dimensional space. The spatial model was able to reproduce the key signatures of homeostatic dynamics, thus showing that restrictions imposed by tissue organization do not alter the neutral dynamics.
Furthermore, I studied non-homeostatic dynamics in stratified squamous epithelial tissues by spatially modelling the growth and competition of non-neutral mutations as well as the effects of wounding in the tissue. The studied dynamics of Notch and p53 mutant clones in mouse epithelia has been found to be highly distinct, with the former fully colonizing the tissue whereas the latter only partially. I demonstrated that the two mutants’ tissue takeover dynamics can be recapitulated by two distinct spatial feedback rules, on the basis of response to crowding, providing a mechanistic explanation of the observed distinct growth modes.
Finally, mutant competition was explored. A striking effect resulting from the spatial interaction of the two mutations in a wild-type background is that the p53 mutant cell population was always outcompeted by the Notch mutant population and appeared to shrink. Considering this consistent emergent behaviour in the competition simulations and given the paucity of Notch mutations in human cancer datasets, it is tempting to speculate that the
aggressive fitness of Notch may offer a tumour-protective effect
Simulations reveal that different responses to cell crowding determine the expansion of p53 and Notch mutant clones in squamous epithelia.
Funder: MRC Cancer unitFunder: Clare CollegeDuring ageing, normal epithelial tissues progressively accumulate clones carrying mutations that increase mutant cell fitness above that of wild-type cells. Such mutants spread widely through the tissues, yet despite this cellular homeostasis and functional integrity of the epithelia are maintained. Two of the genes most commonly mutated in human skin and oesophagus are p53 and Notch1, both of which are also recurrently mutated in cancers of these tissues. From observations taken in human and mouse epithelia, we find that clones carrying p53 and Notch pathway mutations have different clone dynamics which can be explained by their different responses to local cell crowding. p53 mutant clone growth in mouse epidermis approximates a logistic curve, but feedbacks responding to local crowding are required to maintain tissue homeostasis. We go on to show that the observed ability of Notch pathway mutant cells to displace the wild-type population in the mouse oesophageal epithelium reflects a local density feedback that affects both mutant and wild-type cells equally. We then show how these distinct feedbacks are consistent with the distribution of mutations observed in human datasets and are suggestive of a putative mechanism to constrain these cancer-associated mutants
Recommended from our members
A single-progenitor model as the unifying paradigm of epidermal and esophageal epithelial maintenance in mice
Abstract: In adult skin epidermis and the epithelium lining the esophagus cells are constantly shed from the tissue surface and replaced by cell division. Tracking genetically labelled cells in transgenic mice has given insight into cell behavior, but conflicting models appear consistent with the results. Here, we use an additional transgenic assay to follow cell division in mouse esophagus and the epidermis at multiple body sites. We find that proliferating cells divide at a similar rate, and place bounds on the distribution cell cycle times. By including these results in a common analytic approach, we show that data from eight lineage tracing experiments is consistent with tissue maintenance by a single population of proliferating cells. The outcome of a given cell division is unpredictable but, on average, the likelihood of producing proliferating and differentiating cells is equal, ensuring cellular homeostasis. These findings are key to understanding squamous epithelial homeostasis and carcinogenesis
A single-progenitor model as the unifying paradigm of epidermal and esophageal epithelial maintenance in mice
Abstract: In adult skin epidermis and the epithelium lining the esophagus cells are constantly shed from the tissue surface and replaced by cell division. Tracking genetically labelled cells in transgenic mice has given insight into cell behavior, but conflicting models appear consistent with the results. Here, we use an additional transgenic assay to follow cell division in mouse esophagus and the epidermis at multiple body sites. We find that proliferating cells divide at a similar rate, and place bounds on the distribution cell cycle times. By including these results in a common analytic approach, we show that data from eight lineage tracing experiments is consistent with tissue maintenance by a single population of proliferating cells. The outcome of a given cell division is unpredictable but, on average, the likelihood of producing proliferating and differentiating cells is equal, ensuring cellular homeostasis. These findings are key to understanding squamous epithelial homeostasis and carcinogenesis
Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing
Background: Health-care workers have been implicated in nosocomial outbreaks of Staphylococcus aureus, but the dearth of evidence from non-outbreak situations means that routine health-care worker screening and S aureus eradication are controversial. We aimed to determine how often S aureus is transmitted from health-care workers or the environment to patients in an intensive care unit (ICU) and a high-dependency unit (HDU) where standard infection control measures were in place.
Methods: In this longitudinal cohort study, we systematically sampled health-care workers, the environment, and patients over 14 months at the ICU and HDU of the Royal Sussex County Hospital, Brighton, England. Nasal swabs were taken from health-care workers every 4 weeks, bed spaces were sampled monthly, and screening swabs were obtained from patients at admission to the ICU or HDU, weekly thereafter, and at discharge. Isolates were cultured and their whole genome sequenced, and we used the threshold of 40 single-nucleotide variants (SNVs) or fewer to define subtypes and infer recent transmission.
Findings: Between Oct 31, 2011, and Dec 23, 2012, we sampled 198 health-care workers, 40 environmental locations, and 1854 patients; 1819 isolates were sequenced. Median nasal carriage rate of S aureus in health-care workers at 4-weekly timepoints was 36·9% (IQR 35·7–37·3), and 115 (58%) health-care workers had S aureus detected at least once during the study. S aureus was identified in 8–50% of environmental samples. 605 genetically distinct subtypes were identified (median SNV difference 273, IQR 162–399) at a rate of 38 (IQR 34–42) per 4-weekly cycle. Only 25 instances of transmission to patients (seven from health-care workers, two from the environment, and 16 from other patients) were detected.
Interpretation: In the presence of standard infection control measures, health-care workers were infrequently sources of transmission to patients. S aureus epidemiology in the ICU and HDU is characterised by continuous ingress of distinct subtypes rather than transmission of genetically related strains.
Funding: UK Medical Research Council, Wellcome Trust, Biotechnology and Biological Sciences Research Council, UK National Institute for Health Research, and Public Health England
Effects of control interventions on Clostridium difficile infection in England: an observational study
Background: The control of Clostridium difficile infections is an international clinical challenge. The incidence of C difficile in England declined by roughly 80% after 2006, following the implementation of national control policies; we tested two hypotheses to investigate their role in this decline. First, if C difficile infection declines in England were driven by reductions in use of particular antibiotics, then incidence of C difficile infections caused by resistant isolates should decline faster than that caused by susceptible isolates across multiple genotypes. Second, if C difficile infection declines were driven by improvements in hospital infection control, then transmitted (secondary) cases should decline regardless of susceptibility. Methods: Regional (Oxfordshire and Leeds, UK) and national data for the incidence of C difficile infections and antimicrobial prescribing data (1998–2014) were combined with whole genome sequences from 4045 national and international C difficile isolates. Genotype (multilocus sequence type) and fluoroquinolone susceptibility were determined from whole genome sequences. The incidence of C difficile infections caused by fluoroquinolone-resistant and fluoroquinolone-susceptible isolates was estimated with negative-binomial regression, overall and per genotype. Selection and transmission were investigated with phylogenetic analyses. Findings: National fluoroquinolone and cephalosporin prescribing correlated highly with incidence of C difficile infections (cross-correlations >0·88), by contrast with total antibiotic prescribing (cross-correlations 0·2). Interpretation: Restricting fluoroquinolone prescribing appears to explain the decline in incidence of C difficile infections, above other measures, in Oxfordshire and Leeds, England. Antimicrobial stewardship should be a central component of C difficile infection control programmes
Recommended from our members
Methods for analysing lineage tracing datasets.
A single population of progenitor cells maintains many epithelial tissues. Transgenic mouse cell tracking has frequently been used to study the growth dynamics of competing clones in these tissues. A mathematical model (the 'single-progenitor model') has been argued to reproduce the observed progenitor dynamics accurately. This requires three parameters to describe the growth dynamics observed in transgenic mouse cell tracking-a division rate, a stratification rate and the probability of dividing symmetrically. Deriving these parameters is a time intensive and complex process. We compare the alternative strategies for analysing this source of experimental data, identifying an approximate Bayesian computation-based approach as the best in terms of efficiency and appropriate error estimation. We support our findings by explicitly modelling biological variation and consider the impact of different sampling regimes. All tested solutions are made available to allow new datasets to be analysed following our workflows. Based on our findings, we make recommendations for future experimental design
Methods for analysing lineage tracing datasets
A single population of progenitor cells maintains many epithelial tissues. Transgenic mouse cell tracking has frequently been used to study the growth dynamics of competing clones in these tissues. A mathematical model (the ‘single-progenitor model’) has been argued to reproduce the observed progenitor dynamics accurately. This requires three parameters to describe the growth dynamics observed in transgenic mouse cell tracking—a division rate, a stratification rate and the probability of dividing symmetrically. Deriving these parameters is a time intensive and complex process. We compare the alternative strategies for analysing this source of experimental data, identifying an approximate Bayesian computation-based approach as the best in terms of efficiency and appropriate error estimation. We support our findings by explicitly modelling biological variation and consider the impact of different sampling regimes. All tested solutions are made available to allow new datasets to be analysed following our workflows. Based on our findings, we make recommendations for future experimental design
Recommended from our members
A single-progenitor model as the unifying paradigm of epidermal and esophageal epithelial maintenance in mice.
In adult skin epidermis and the epithelium lining the esophagus cells are constantly shed from the tissue surface and replaced by cell division. Tracking genetically labelled cells in transgenic mice has given insight into cell behavior, but conflicting models appear consistent with the results. Here, we use an additional transgenic assay to follow cell division in mouse esophagus and the epidermis at multiple body sites. We find that proliferating cells divide at a similar rate, and place bounds on the distribution cell cycle times. By including these results in a common analytic approach, we show that data from eight lineage tracing experiments is consistent with tissue maintenance by a single population of proliferating cells. The outcome of a given cell division is unpredictable but, on average, the likelihood of producing proliferating and differentiating cells is equal, ensuring cellular homeostasis. These findings are key to understanding squamous epithelial homeostasis and carcinogenesis
Methods for analysing lineage tracing datasets.
A single population of progenitor cells maintains many epithelial tissues. Transgenic mouse cell tracking has frequently been used to study the growth dynamics of competing clones in these tissues. A mathematical model (the 'single-progenitor model') has been argued to reproduce the observed progenitor dynamics accurately. This requires three parameters to describe the growth dynamics observed in transgenic mouse cell tracking-a division rate, a stratification rate and the probability of dividing symmetrically. Deriving these parameters is a time intensive and complex process. We compare the alternative strategies for analysing this source of experimental data, identifying an approximate Bayesian computation-based approach as the best in terms of efficiency and appropriate error estimation. We support our findings by explicitly modelling biological variation and consider the impact of different sampling regimes. All tested solutions are made available to allow new datasets to be analysed following our workflows. Based on our findings, we make recommendations for future experimental design