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The role of space in homeostasis and preneoplasia in
stratified squamous epithelia

Vasiliki Kostiou

A major subject of study in biological research is the dynamics of stem cells in squamous
epithelia. Given that most common human cancers develop from epithelia, understanding
the rules of cell fate decision in these systems is key to explaining not only healthy tissue
growth and maintenance but also the processes of mutagenesis and cancer. The aim of my
project was to investigate the dynamics in squamous epithelial tissues both in homeostasis
and preneoplasia, using cellular automata (CA) models.

Stem cell dynamics has been shown to be accurately described by a simple mathematical
model, the single progenitor (SP) model. Reliable parameterisation of this model would
give access to valuable quantitative information on epithelial tissue maintenance and enable
investigating how mutations affect tissue dynamics. I initially identified the most appropriate
method for accurately parameterising the homeostatic system.

I then sought to account for the spatial patterning of cells by implementing the SP model
in two-dimensional space. The spatial model was able to reproduce the key signatures of
homeostatic dynamics, thus showing that restrictions imposed by tissue organization do not
alter the neutral dynamics.

Furthermore, I studied non-homeostatic dynamics in stratified squamous epithelial tissues
by spatially modelling the growth and competition of non-neutral mutations as well as the
effects of wounding in the tissue. The studied dynamics of Notch and p53 mutant clones in
mouse epithelia has been found to be highly distinct, with the former fully colonizing the
tissue whereas the latter only partially. I demonstrated that the two mutants’ tissue takeover
dynamics can be recapitulated by two distinct spatial feedback rules, on the basis of response
to crowding, providing a mechanistic explanation of the observed distinct growth modes.

Finally, mutant competition was explored. A striking effect resulting from the spatial
interaction of the two mutations in a wild-type background is that the p53 mutant cell
population was always outcompeted by the Notch mutant population and appeared to shrink.
Considering this consistent emergent behaviour in the competition simulations and given
the paucity of Notch mutations in human cancer datasets, it is tempting to speculate that the
aggressive fitness of Notch may offer a tumour-protective effect.
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Chapter 1

Introduction

Summary

In this chapter, I provide the necessary background information related to my PhD project.
My main research question was to understand homeostatic and preneoplastic dynamics
in stratified squamous epithelial tissues. To this end, I sought to explore how epithelial
cells interact and compete and how mutant cell populations expand within a tissue. I
initially describe the morphological properties of stratified squamous epithelial tissues, how
their dynamics can be quantified and different proposed models of epithelial maintenance.
Subsequently, I discuss the effects of spatial constraints on cell dynamics imposed by tissue
architecture, highlighting the importance of explicitly considering space when studying the
processes of mutagenesis and tumour formation. Finally, I review the recent literature that
investigates the effects of genetic mutations on epithelial homeostasis and discuss the aims
of my research project.

1.1 Introduction

A primary focus of biological science is to understand complex phenomena, such as tissue
growth and maintenance. These processes involve the cooperation of individual cells through
a series of mechanisms which operate over different time and length scales, to generate and
preserve a more complex, hierarchical structure.

Epithelial tissues protect and line the body’s surfaces and cavities, serving as an interface
between the body and the environment. Despite the heterogeneity among them, a common
characteristic is that they consist of densely packed sheets of cells which can be organised
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in a single layer or multiple layers (Donati and Watt, 2015). Notably, the majority of
adult human cancers (about 90%) develop from epithelia (Frank, 2007). Two well studied
epithelial tissues of particular interest are the mammalian oesophageal epithelium and the
epidermis. These are stratified squamous (i.e. consisting of cells with flattened cell shape)
epithelial tissues that exhibit a rapid turnover and are maintained through continuous stem
cell division and differentiation. Stem cells communicate and interact with one another and
their environment in a tightly coordinated manner to respond to tissue needs and ensure
homeostasis. Deregulation of these fundamental processes may result in serious pathological
conditions, such as cancer. Therefore, maintenance of these tissues is critically important
to understand both health and cancer progression and remains a major subject of study in
biomedicine.

Epithelial tissue maintenance has been studied over the last decades and different models
describing homeostatic dynamics have been proposed. An increasing body of work based on
lineage tracing demonstrated that stratified squamous epithelia follow a stochastic, population
asymmetric self-renewal. That is to say, cell proliferation and loss remain balanced on a
population basis (Clayton et al., 2007, Doupé et al., 2010, 2012, Mascré et al., 2012, Lim
et al., 2013, Rompolas et al., 2016, Sada et al., 2016, Sanchez-Danes et al., 2016). However,
whether there is a single or multiple underlying populations of dividing cells remains a
matter of debate. Currently, there are three proposed models of stratified squamous epithelial
stem cell maintenance. Among them, the simplest model is the single progenitor (SP),
which supports the existence of a single dividing cell population (Clayton et al., 2007). A
second model is the stem cell - committed progenitor (SC-CP), proposing a hierarchy of
a slow-cycling stem cell population that gives rise to fast-cycling committed progenitors
(Mascré et al., 2012). An alternative hypothesis is the two independent stem-cell (2xSC)
model, which argues in favour of two stem cell populations, with different division rates
(Sada et al., 2016).

The above-mentioned stochastic models describe the evolution of cell populations. How-
ever, cells grow and compete within a tissue that has a certain organisation and structure.
As a consequence, the tissue imposes spatial constraints on cell movement and growth, thus
affecting growth dynamics. There are several lines of evidence highlighting that spatial con-
straints have a strong impact on how mutant cells expand and how tumours evolve (van der
Heijden et al., 2019, Noble et al., 2019, Chkhaidze et al., 2019, Lynch et al., 2017, Hall et al.,
2019). Therefore, the study of space contribution to clonal interaction and growth within
tissues is key to understand the progression of mutant clones towards cancer.
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1.2 Stratified squamous epithelia

The role of epithelial tissues is to protect and line the body’s surfaces and cavities, serving as
an interface between the body and the environment. Stratified squamous epithelia are tissues
consisted of densely packed sheets of squamous cells, organised in multiple layers, with the
bottom layer sitting on a basement membrane. Of them, two very well studied systems are
the oesophageal epithelium and the interfollicular epidermis (IFE).

The oesophagus is a tube connecting the stomach with the external environment and
is lined with a vertically stratified squamous epithelium. The oesophageal epithelium is a
rapidly regenerative tissue which consists of layers of keratinocytes arranged on top of a
basement membrane (Figure 1.1 bottom) (Seery, 2002, Doupé et al., 2012, Alcolea, 2017).
Despite sharing a common cellular hierarchy, there are fundamental histological differences
between humans and mice. In humans, the oesophageal epithelium is folded along papillae
which divide the epithelium into papillary and interpapillary zones, contains more layers and
it is non-keratinized (Seery, 2002). Murine oesophageal epithelium holds a less complex
organization. In contrast to other epithelia, it has a uniform architecture, lacking any glands
or other appendages and is keratinized. Keratinization (or cornification) is the process of
terminal differentiation during which keratinocytes lose their organelles and are transformed
into a tough layer of flattened, dead cells (Candi et al., 2005). Keratinization of the murine
oesophageal epithelium may form an extra protective barrier against abrasive food intake
(Rosekrans et al., 2015). The remarkable architectural simplicity along with the rapid
turnover makes murine oesophageal epithelium an ideal experimental system for studying
cell dynamics.

A tissue with a constant turnover and a slightly more complex architecture is the in-
terfollicular epidermis. Similarly to the oesophageal epithelium, the epidermis is a well
characterized system and therefore considered a good prototype tissue for studying cellular
behaviour. Mammalian epidermis serves as an essential barrier having a protective function
on animal survival from the external environmental stresses such as dehydration, wounds and
microbial infection. It is maintained by a stratified squamous epithelium which consists of
layers of keratinocytes interspersed with hair follicles and sweat glands (Figure 1.1 top)(Lu
et al., 2012, Page et al., 2013, Blanpain and Fuchs, 2009). Progenitor cells are located at the
deepest basal layer and differentiating ones are progressively moving through the supra basal
layers towards the surface where they leave the tissue (Clayton et al., 2007, Doupé et al.,
2010).
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Fig. 1.1 The architecture of stratified squamous epithelial tissues of interfollicular epidermis (skin) and
oesophagus in adult mice. Proliferation is restricted to the basal layer. Upon differentiation, basal cells exit the
cell cycle and migrate through suprabasal layers, until eventually, they are shed from the tissue. Cell production
and loss should be perfectly balanced so that homeostasis and tissue proper function is achieved. Figure based
on Piedrafita et al. (2020).
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Both oesophageal epithelium and epidermis share a common maintenance mechanism.
Proliferation is confined to the most basal layer, where cells are arranged with their nuclei
perpendicular to the membrane (Rosekrans et al., 2015). On commitment to differentiation,
basal cells leave the lowermost basal layer and stratify to the upper suprabasal layers. During
the differentiation process they undergo changes in their shape and orientation. In the late
stages of differentiation they lose their nuclei, become large, flattened and organised parallel
to the basement membrane. Eventually, they reach the tissue surface from which they are
shed (Figure 1.1 middle). In a homeostatic state, the proliferation of cells in the basal
layer is strongly linked to the shedding of the terminally differentiated cells (Clayton et al.,
2007, Doupé et al., 2010, 2012). The mechanisms that control the balance between the
production of proliferating and differentiating cells are highly important, as an excess of
either proliferating or differentiating cells may result in tumourigenesis and tissue failure
respectively (Doupé and Jones, 2013, Alcolea et al., 2014).

1.3 Quantifying tissue dynamics

Recent advances in experimental techniques have shed more light on our understanding of
stem cell behaviour in epithelial tissues. Genetic lineage tracing provides the opportunity
to label a cell type of interest and observe the fate of its progeny at different time points.
The major advantage of this approach is that the behaviour of cells is studied in their native
environment in contrast to other methods such as tissue culture or transplantation assays
(Alcolea and Jones, 2014). Cells within tissues are marked with an inheritable fluorescent
label which is passed to their descendants each time a division occurs. Thus, fate decisions
can be recorded over time.

To achieve cell labelling, mice are genetically modified to express a bacterial recombinase
enzyme Cre in the cell type of interest. The Cre enzyme is usually fused with a mutant
estrogen receptor (ERT). Upon treatment with a drug (i.e tamoxifen), creERT fusion protein
enters the nucleus and enables recombination in its recognition site, loxP. More specifically,
Cre activity leads to the expression of a reporter gene, usually a fluorescent protein such as
GFP, by excising a "stop" cassette that blocks transcription of the reporter (Figure 1.2a). If
the drug is induced at low doses, targeted cells are labelled at low frequency, resulting in cell
families deriving from a single ancestor (cell clones) (Figure 1.2b)(Alcolea and Jones, 2014).
To further avoid clone fusion, multicolour reporters (e.g. confetti systems (Snippert et al.,
2010), RGB marking with lentiviral vectors (Weber et al., 2012)) have been also used, where
cells are labelled randomly with more than one colour.
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Traditional lineage tracing allows the visualisation of static "snapshots" of clonal be-
haviour at certain timepoints whereas more modern live imaging techniques enable the live
tracking of fate choices of individual cells within labelled clones (Park et al., 2016). The
distribution of cell clone sizes observed in lineage tracing experiments can be used to further
investigate clonal dynamics across the population of cells and make important observations
regarding cellular behaviour within tissues.

a

b

Fig. 1.2 Transgenic lineage tracing. a) Genetically modified mice express a bacterial recombinase enzyme
Cre which is fused with a mutant estrogen receptor (ERT) and is only active following treatment with a drug
(Tamoxifen). After treatment, CreER fusion protein enters the nucleus, removes a loxP flanked "stop" cassette
and leads to the expression of a reporter gene, here a GFP fluorescent protein. The progeny of the labelled cell
can be tracked as they will also express the fluorescent reporter. (b) Schematic representation showing a time
chase of a typical labelled clone. If targeted cells are labelled at low frequency, single-cell derived clones may
arise. Figure adapted from Alcolea and Jones (2013).
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1.4 Models of epithelial homeostasis

Maintenance in stratified squamous epithelia has been studied for several decades and several
attempts have been made to describe the way cells behave to maintain and renew these
stratified squamous tissues, resulting in controversial conclusions. An early attempt was
made by Leblond and colleagues in rat oesophageal epithelium where using pulse labelling
with tritiated thymidine allowed the monitoring of cell fates. Leblond and colleagues observed
that 48 hours post labelling, 58% of stem cell divisions gave rise to two daughters that either
remained at the basal layer or moved to the suprabasal layer and 42% produced one daughter
remaining at the basal layer and one moving at the suprabasal layer (Marques-Pereira and
Leblond, 1965). These findings suggested that homeostatic dynamics in the oesophageal
epithelium is maintained by a single population of stem cells.

Subsequent studies however, both in mouse oesophagus and epidermis, proposed an
alternative model of tissue homeostasis where long-lived, slow cycling basal stem cells divide
asymmetrically to give rise to short-lived rapidly cycling transit amplifying (TA) cells that
execute the appropriate differentiation pathways after several rounds of division (Mackenzie,
1970, Potten and Booth, 2002, Croagh et al., 2007, Kalabis et al., 2008). The identification of
distinct oesophageal stem cell subpopulations was mainly based on the expression of different
levels of cell surface markers. Proliferative heterogeneity was believed to be further evidenced
by tissue culture experiments of human epidermal keratinocytes where some cells were able
to form rapidly expanding and persistent colonies (holoclones), potentially representing
stem cells, whilst others generated small colonies with limited proliferative potential that
became lost through terminal differentiation (paraclones), potentially representing TA cells
(Barrandon and Green, 1987). The stem/TA hypothesis argues in favour of an invariant
asymmetric mode of self renewal, where long term dynamics is expected to result in similar
sized clonal units.

A series of recent studies based on genetic lineage tracing further questioned the invariant
asymmetry paradigm and proposed a model of oesophageal and epidermal homeostasis in
mouse that supports the early Leblond’s findings (Clayton et al., 2007, Doupé et al., 2010,
2012, Lim et al., 2013, Rompolas et al., 2016). If a stem/TA mode of maintenance was
true, stem cell clones would have been expected to initially expand and eventually adopt an
invariant size whereas clones derived from TA cells would have been expected to become
extinct following an initial limited growth. On the contrary, quantitative analysis of clonal
cell fate behaviour in those studies revealed that the number of clones decreased over time
but the size of the remaining ones progressively increased to ensure an overall constant
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labelled cell population. These observations argue in favour of a population asymmetric
self-renewal, that is, the outcome of each individual division is stochastic but an overall
balance between cell production and loss is maintained. Thus, the proposed model supported
the existence of functional equivalence within stem cell population, suggesting that a single
progenitor population with balanced stochastic fate maintains epithelial homeostasis (the
single progenitor (SP) model).

Further studies, also based on genetic lineage tracing, suggested that the observed
population asymmetrical self-renewal strategy is underpinned by proliferative heterogeneity
and proposed the hierarchical stem cell - committed progenitor (SC-CP) model. Mascré et al.
(2012), Sanchez-Danes et al. (2016) used two targeted promoters (Involucrin and Keratin
14) to induce genetic labelling in mouse tail epidermal cells. By performing quantitative
clonal analysis, they claimed that clones derived from the two different genetic constructs had
distinct dynamics, with the keratin 14-creER targeted cells exhibiting an increased survival
rate, and thus were thought to represent a stem cell subpopulation. Based on these findings,
Mascré et al. (2012) and Sanchez-Danes et al. (2016) proposed that epidermal homeostatic
dynamics can be described by a proliferative hierarchy. The hierarchical model posits the
existence of two distinct populations, slow-cycling stem cells and quickly-cycling progenitor
cells that both undergo population asymmetric self renewal. Stem cells divide stochastically
at a slower rate, to generate three possible fate outcomes with balanced probabilities: two
stem cells, one stem and one progenitor cell or two progenitor cells. This process gives rise
to committed progenitors that divide at a faster rate and follow a similar stochastic division
pattern generating either two progenitor cells, two differentiating cells or one daughter of
each type.

Aside from the SP and SC-CP models, a third population asymmetric model of epithelial
homeostasis was also proposed based on lineage tracing data in mouse back skin. According
to that model, there are two independent populations of stem cells that divide at two different
rates (2xSC model), following a stochastic fate choice pattern (Sada et al., 2016). The
2xSC hypothesis was based on the analysis of cell division kinetics from H2BGFP dilution
experiments.

1.5 The Single Progenitor (SP) model

Quantitative analysis across several studies based on genetic lineage tracing in mouse skin and
oesophagus over the past years revealed that homeostasis in these tissues can be accurately
recapitulated by a stochastic process with some studies suggesting a single underlying stem
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cell population (Clayton et al., 2007, Doupé et al., 2010, Klein and Simons, 2011, Doupé
et al., 2012, Lim et al., 2013, Rompolas et al., 2016), whilst others are proposing the existence
of distinct populations (Mascré et al., 2012, Sanchez-Danes et al., 2016, Sada et al., 2016).
In this thesis I shall focus on the simplest proposed model, the single progenitor (SP) model.

This model supports the idea that the tissue is maintained by a single, equipotent progeni-
tor population of basal cells that are able to give rise to either stem cells or differentiating
daughters stochastically. Each division leads to three possible fate outcomes: two prolif-
erating, two differentiating or one proliferating and one differentiating daughter may arise.
The probabilities of each type of division are balanced, allowing homeostasis to be achieved
(Figure 1.3a).

The stochastic nature of this tissue renewal paradigm implies that cell clones compete
neutrally within the tissue, with some of them being "lucky" by chance and expand as
they undergo symmetric division, whilst others shrink and become extinct as they undergo
symmetric differentiation (Figure 1.3b).

This population asymmetric mode of renewal can be further specified by a set of parame-
ters and can be described as a continuous time Markovian process, as shown by Doupé et al.
(2012), Clayton et al. (2007):

A λ−→


AA r

AB 1−2r

BB r

B Γ−→C

C
µ−→∅,

(1.1)

where A represents the basal layer progenitor cells, B the basal cells committed to differentiate
and C the suprabasal layer cells. Progenitor cells (A) divide regularly with an overall division
rate λ and give rise to either two progenitor daughters (AA), two differentiating daughters
(BB) or one daughter of each type (AB) with fixed probabilities. Given the fact that AA

symmetric division leads to clone expansion and BB symmetric division leads to clone
extinction, the two symmetric division rates should be equal in order for a steady state in
terms of number of cells to be maintained across the progenitor clone population. The
probabilities of symmetric and asymmetric divisions are r and 1− 2r respectively with
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0 < r < 0.5. Differentiating daughters in the basal layer stratify to the suprabasal layer at
rate Γ. Supra basal cells, C, are shed at rate µ . The proportion of progenitor cells in the basal
layer is ρ and differentiating cells before stratification 1−ρ , (Doupé et al., 2012). As the
rules of homeostasis dictate that the total basal layer cell population stay constant over time,
an additional rule arises, as shown by Clayton et al. (2007), Doupé et al. (2012):

Γ =
ρ

1−ρ
λ (1.2)

Taken together, clonal dynamics in oesophageal epithelium can be fully parameterized
by the division rate (λ ), the stratification rate (Γ) and the probability of symmetric fate (r).

The single progenitor model of epithelial homeostasis gives rise to a number of character-
istic quantitative features observed in stem cell clone size distributions. These features are
considered the SP hallmarks (Clayton et al., 2007, Klein and Simons, 2011):

• The total proportion of cells remains unaltered. (Figure 1.4a)

• The average clone size of the surviving clones increases linearly with time with slope
τ ∼ rλ

ρ
(Figure 1.4b).

• The stochastic division outcomes which include symmetric differentiation, may lead
to a continuous extinction of clones. Due to this, the number of surviving clones
progressively decreases, following 1

1+λ rt (Figure 1.4c).

• The distribution of clone sizes becomes substantially broader with time (Figure 1.4d),
adopting a characteristic scaling behaviour. According to this feature, the chance of
finding a clone of a size larger than some multiple of the ensemble average becomes
fixed, n/< n(t)>(Figure 1.4e).
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a

b

Fig. 1.3 Population asymmetry paradigm of tissue self-renewal. a) According to the SP model, stratified
epithelial tissues are maintained by a single, equipotent population of progenitor cells which divide stochastically
to generate either two proliferating daughters, two differentiating daughters with equal probabilities or one
daughter of each type. b) Population asymmetry leads to diverse clonal populations. Due to the stochastic
outcome of each division, some clones will be "lucky" and expand whereas others will inevitably become
extinct as a result of symmetric differentiation.
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Fig. 1.4 The observation of several characteristic features in lineage tracing data supports the single
progenitor as a model of epithelial homeostasis. a) the average percentage of labelled basal cells remains
constant over time, b) the average clone size increases linearly with time with slope τ ∼ rλ

ρ
, c) the number of

surviving clones decreases over time following 1
1+λ rt , d) the range of clone sizes becomes substantially broader

with time, e) clone size distribution adopts a characteristic scaling behaviour so that the chance of finding a
clone of a size larger than some multiple of the average becomes fixed, n/< n(t)>. Graphs taken from Doupé
et al. (2012).
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1.6 Spatial constraints determine growth dynamics

In order to study cell dynamics in epithelial tissues, one has to take into consideration that
in such well defined structures, cells are organised in densely packed layers and do not act
in isolation. On the contrary, their movement and growth is subject to spatial constraints
imposed by their local environment and interactions with neighbouring cells.

There is growing evidence that spatiotemporal regulation of cell dynamics has important
implications in both tissue maintenance and disease. Cellular interaction and competition in
space are sufficient to cause alterations in growth patterns. Consistent with this, it has been
recently shown that cell cycle progression of single cells in tissues may be coordinated by
spatial constraints imposed by their local environment (i.e. the presence of neighbouring
cells) (Streichan et al., 2014). Furthermore, analysis of mutant dynamics in healthy human
epidermis suggests that the distribution of mutant clone sizes within the tissue is governed by
the spatial competition of cells (Lynch et al., 2017).

Spatial constraints have been reported to have marked effects on how mutant cells expand
and how tumours evolve. In support of this, it has been shown that the existence of different
modes of evolution observed in human tumours can be attributed to variations in their spatial
structure (Noble et al., 2019). That is to say, differences in tumour structural properties
promote or limit the range of cellular interactions and spreading of mutations, thus leading to
distinct modes of tumour clonal evolution.

Further evidence on the importance of space in tumour evolution comes from a recent
study investigating clonal expansion in colorectal cancer xenografts (van der Heijden et al.,
2019). Here, it is reported that tumour growth is driven by large clones that tend to be found
at the border whereas small clones are usually located at the centre of the tumour. These
findings indicate that clonal outgrowth is dictated by the spatial location of a clone within a
tumour rather than cell-intrinsic factors.

Recent studies have also highlighted how disregarding the effects of space can introduce
sampling bias in the analysis of mutant and cancer genomic datasets. More specifically,
it has been stated that mutant clone size distributions are heavily influenced by the spatial
distribution of cells within a tumour. Therefore, the underlying assumptions of how tumours
grow in space in combination with the sampling procedure for sequencing tumour samples
could lead to artificial biases in clonal selection (Chkhaidze et al., 2019, Noble et al., 2019)
and thus misleading conclusions.

Collectively, all the above findings provide a strong evidence that space cannot be ignored
when studying pre-cancer and cancer dynamics. The study of space contribution to clonal
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interaction and growth within tissues is therefore key to understand the progression of mutant
clones towards cancer.

1.7 Cancer in oesophageal and skin tissues

Oesophageal cancer is one of the most prevalent malignancies in the world both in incidence
and mortality (Agrawal et al., 2012, Melhado et al., 2010). Oesophageal squamous cell
carcinoma (OSCC) and oesophageal adenocarcinoma (OAC) are the two major subtypes of
oesophageal cancer. The incidence of each subtype varies mainly according to geographical
characteristics. OSCC is the most frequent type worldwide, which is present in Eastern
Asia and parts of Africa, whereas OAC is a rapidly increasing disease in Western countries
(Agrawal et al., 2012, Melhado et al., 2010, Qian et al., 2016, Alcolea, 2017).

There are several risk factors associated with OSCC such as diet, alcohol, tobacco
chewing, smoking and physical inactivity. Other environmental influences, insufficient
nutrition and drinking habits are also involved. Genetic susceptibility seems to contribute as
well. The aetiology of OAC and its increasing incidence is mainly correlated with gastro-
oesophageal reflux disease (GORD), Barrett’s oesophagus and obesity. The overall 5-year
survival rate of oesophageal cancer remains poor (15% to 25%) due to late detection (Agrawal
et al., 2012, Melhado et al., 2010, Qian et al., 2016, Alcolea, 2017).

Skin cancer is distinguished in three major types: basal cell carcinoma (BCC), squamous
cell carcinoma or cutaneous squamous cell carcinoma (cSCC) and melanoma. Cutaneous
squamous cell carcinoma and basal cell carcinoma are the major subtypes of non-melanoma
skin cancer (NMSC) and account for the 25% and 75% of NMSC respectively (Pickering
et al., 2014, Madan et al., 2010). Melanoma is less common than the non-melanoma skin
cancer types, but more aggressive as it is more likely to grow and metastasize (Rastrelli et al.,
2014).

The primary etiological factor accounting for skin cancer is the exposure to sunlight,
as it induces ultraviolet (UV) DNA damage. Considering this, it is not surprising that skin
cancer occurs primarily on sun-exposed body sites. As a consequence, populations living in
areas of high ambient solar irradiance have a greater risk of developing the disease. Along
with environmental factors, the risk of skin cancer development is also dependent on several
genotypic and phenotypic characteristics, with older and light skin colour individuals being
more vulnerable (Gandini et al., 2005, Dotto and Rustgi, 2016).

In order to provide better diagnosis and therapeutic solutions for skin and oesophagus
cancers, it is critical to further understand how the disease originates and evolves. To achieve
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this, a better understanding of how these tissues are maintained in homeostasis, how they
respond to perturbations such as wounding and how these mechanisms are deregulated during
carcinogenesis should be our main focus.

1.8 The effect of Notch and p53 mutations on epithelial
homeostasis

Several signalling pathways have been reported to play an important role in keeping epithelial
tissues in homeostatic state as well as regulating morphogenesis during development. The
Hedgehog signalling pathway has been found to regulate oesophageal epithelial basal cells’
phenotypes, promoting their proliferation (van Dop et al., 2012, Rosekrans et al., 2015). It
has been also shown to contribute to epidermal development, homeostasis, and repair (Abe
and Tanaka, 2017). Moreover, Sox2 and p63 transcriptional regulators have been reported to
be necessary for the maintenance of the tissue (Rosekrans et al., 2015, Soares and Zhou, 2018,
Truong et al., 2006). The Notch signalling pathway is one of the main pathways, inducing
differentiation in both skin and oesophagus. Notch is a transmembrane receptor, enabling
short-range communication between cells and regulating fundamental cellular processes such
as proliferation, differentiation and cell death in many tissues (Watt et al., 2008).

An increasing body of work identified several genes commonly mutated in squamous
epithelial cancers. Among those, mutations in the tumour suppressor gene TP53 and NOTCH1

are frequently detected in squamous cell carcinoma samples (Stransky et al., 2011, Gao et al.,
2014, Pickering et al., 2014, Rosekrans et al., 2015, Alcolea, 2017) Interestingly, a series
of recent studies report high incidence of many of the frequently found mutated genes in
tumours such as TP53 and NOTCH1 in healthy human skin and oesophagus (Martincorena
et al., 2015, 2018, Yokoyama et al., 2019). This highlights the importance of studying
the process of accumulation and interaction of these mutations within tissues in order to
understand tumourigenesis.

Studying cell behaviour in vivo through lineage tracing offers a new avenue for under-
standing both homeostatic cell dynamics and more importantly changes in cellular behaviour
in response to injury and key mutations that could potentially initiate and contribute to
preneoplasia.

Doupé et al. studied homeostasis in mouse oesophageal epitelium and challenged the
homeostatic dynamics by performing lineage tracing on wounded tissue (Doupé et al.,
2012). Data showed that a single population of progenitor cells with balanced stochastic
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fate maintains homeostasis and switches fate towards proliferation in response to injury
conditions until the wound has healed.

Alcolea et al. studied the effects of Notch pathway inhibition in mouse oesophageal
epithelial cells. To do this, the authors blocked the transcription of Notch receptor’s intracel-
lular domain using a mouse model expressing a dominant negative form of Mastermind-like
1 (Maml1) protein (DNM) (Alcolea et al., 2014). Maml1 is required in the canonical
Notch pathway as it forms a complex with Notch intracellular domain, thus enabling the
transcription of target genes (Kopan and Ilagan, 2009).

The dynamics of the mutated oesophageal epithelium was followed for 1 year. Over the
first 3 months post induction Maml1 knock outs expanded rapidly at the expense of their
wild-type neighbours. At later time points, mutant growth rate slowed down as soon as
Maml1 clones started merging. However, the proportion of mutant cells kept increasing until
the entire epithelium was colonised. Despite the overall epithelium being replaced by Notch
mutants, no tumours were formed. Quantitative analysis of clonal data suggested that Notch
mutants had their symmetric differentiation probability turned off, thus generating persistent
clones (Figure 1.5a top). Interestingly, this advantage in cell fate came along with promoting
the differentiation of the adjacent wild-type cells. Moreover, mutants appeared to have an
increased division rate and decreased stratification rate. These observations lend Maml1
mutants an apparent competitive advantage over their wild type counterparts and explain
their ability to spread across the tissue. Strikingly, once tissue take over was completed,
the imbalance in mutant fate reverted towards normal, with the symmetric differentiation
probability restored (Figure 1.5a bottom). A new stationary state with a faster turnover was
established.

Additional treatment with carcinogens in the same experiment showed that Maml1
mutant clones could facilitate other less advantageous mutations to expand when co-existing,
providing an example of the synergistic effect of different mutations in the early development
of cancer.

Murai et al. studied mutant dynamics in mouse back epidermis. To this end they tracked
fate behaviour of epidermal epithelial cells carrying a heterozygous p53 gain-of-function
mutation p53R245W , the mouse equivalent of the frequently detected p53R248W in both normal
and cancerous human epidermis (Murai et al, 2018). By inducing a p53R245W (p53∗/wt)
mutation in transgenic mouse epidermal single progenitor cells, the growth dynamics of
mutants in a background of their wild-type counterparts was observed.

Up to 24 weeks post induction, the p53 mutant population outcompeted normal epidermal
cells, clearly indicating their competitive advantage (Figure 1.5b top). Beyond that transient
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period of increased mutant clonal growth, the expansion rate of p53∗/wt cells weakened
considerably and they eventually reached a 30% proportion of the basal layer by 15 months
(Figure 1.5b bottom). Based on 5-ethynyl-2’-deoxyuridine(EdU) data, a marker that stains
basal cells in S phase of the cell cycle, the restricted mutant growth at later time points could
not be attributed to a decrease in mutant division rate. Along with the slowing of mutant
population expansion at 24 weeks, a roughly 10% increase in basal layer cell density was
observed, without influencing epidermal functional integrity. These findings suggested that
p53∗/wt epidermal progenitor cells adjust their fate to respond to alterations in their cellular
environment.
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a

b

Fig. 1.5 Studying the effects of Notch pathway inhibition (a) and p53 mutations (b) in murine oesophagus
and back epidermis respectively, using lineage tracing. a)Top: Initially DNM-expressing cells (Maml1
knock outs) expanded rapidly at the expense of their wild-type counterparts. The division outcome generating
two differentiated cells was lost in Maml1 knock outs. Bottom: Once the tissue was colonised by DNM-
expressing cells, the symmetric differentiation probability was restored and a new steady state was established.
Figure based on Alcolea et al. (2014). b) Top: p53∗/wt cells initially expanded in the tissue as they presented a
competitive advantage which favoured divisions producing stem cells. Bottom: From 24 weeks post induction,
the expansion of 53 mutants slowed substantially and they reached a 30% proportion of the basal layer by 15
months. The observed behaviour of mutant cells implied that crowding induced stress in the basal layer as
a result of their expansion activity may have forced the return towards balanced dynamics. Figure based on
Murai et al. (2018).
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1.9 Modelling epithelial dynamics

Computational models can be used to give answers regarding complex biological processes,
such as epithelial tissue dynamics. A variety of modelling approaches have been proposed to
model epithelial maintenance, mutagenesis and cancer. These may be categorized into two
main classes: continuum and cell-based models. Here, I provide a brief introduction to these
modelling classes.

1.9.1 Continuum models

Continuum models have been typically used to model these processes and model cell densities
or populations instead of single cells. Within this model paradigm, cells are represented
as a continuous variable, thus accounting for large regions of cells with spatially averaged
properties (Milde et al., 2014). Continuum models are suitable to describe the large scale
tissue dynamics at the millimeter to centimeter range.

However, the approach of treating the tissue as a continuum does not preserve the identity
and properties of individual cells, thus rendering the incorporation of heterogeneity between
cells within a population not straightforward (Osborne et al., 2017, Milde et al., 2014).

1.9.2 Cell-based models

To underpin both normal and neoplastic tissue dynamics that result from complex and
heterogeneous processes, accounting for single cell behaviour may be required. Cell-based
models or individual-based models allow the simulation of individual cell behaviour explicitly.
In these models, cells are represented as discrete entities with assigned properties, which
respond to local interaction rules, in contrast to continuum approaches where the behaviour
of individual cells is discarded.

Depending on the information required to be captured, different cell-based model classes
can be used, with different levels of complexity. They can be further distinguished into on
and off lattice, based on whether cells are restricted to a fixed grid or they move freely in
response to applied forces (Van Liedekerke et al., 2015, Osborne et al., 2017, Metzcar et al.,
2019).



20 Introduction

On-lattice models

In the on-lattice modelling approach, space is organized into a grid of fixed lattice sites. This
decreases the computational cost substantially but at the same time an accurate representation
of physics is compromised.

Among on-lattice modelling approaches, cellular automata (CA) is the simplest. The
concept of cellular automata was initially introduced in the 1950s by John von Neumann
and Stanislaw Ulam in order to examine self-reproduction in discrete systems, and have
since been extended to a series of different applications. A famous CA is the Game of life
(Gardner, 1970), proposed by John Conway. The Game of life introduced and made the
CA idea popular to a larger audience by highlighting the ability to study complex behaviour
from simple local rules. In CA, each lattice site is typically occupied by a single biological
cell (Figure 1.6a). At each time step, each cell is updated according to a set of simple
local rules usually accounting the status of neighbouring cells and the space occupancy. To
model processes of cell movement, division and death, each cell may either move to a vacant
neighboring site, free a lattice site, or place its progeny to an adjacent site. Despite their
simplicity, CA models are capable of recovering the highly complex behaviour of biological
systems (Deutsch, 2005). The low complexity of this model class, allows for performing
multiple simulations of large cell population sizes efficiently.

A special type of CA used for the simulation of fluid flows are lattice gas CA (LGCA)
models. In LGCA models velocity channels are incorporated and a single lattice site can
contain multiple cells, thus allowing the simulation of large numbers of cells (Figure 1.6b).
The number of velocity channels for each lattice site reflects the number of neighbouring
lattice sites. Each cell is associated with its position and velocity and the motion of groups
of cells through channels between individual lattice sites is recorded (Van Liedekerke et al.,
2015, Metzcar et al., 2019).

A more realistic representation of cell shapes is achieved by the Cellular Potts (CP)
models (Graner and Glazier, 1992). According to this model class, multiple contiguous
lattice sites may be occupied by one cell (Figure 1.6c). The evolution of the system relies on
a free energy minimization approach using Monte Carlo simulation algorithm. CP models are
thus capable of studying mechanical properties of the system, such as cell-cell, cell-matrix
adhesion and membrane tension (Jones and Chapman, 2012). However, this modelling
approach is more computationally expensive compared to the above mentioned on-lattice
model classes.
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Off-lattice models

A more detailed exploration of mechanical processes is achieved with the off-lattice or
lattice-free models. In off-lattice models, cells move continuously in space and interact
based on forces exchanged between them. The precise position of cells is tracked with the
help of an equation of motion. Lattice-free models are grouped into center-based models
(CBMs) that focus on cell centre interactions, where cell shape is not resolved precisely and
boundary-based cell models that focus on cell boundary interactions, which allow a more
detailed cell shape description, thus representing complex cell shapes (Osborne et al., 2017,
Metzcar et al., 2019).

In center-based models, cells are typically simulated as spheres or deformable ellipsoids -
for a more realistic morphological representation - and the centre of each cell is tracked over
time (Figure 1.6d). The trajectory of each cell is described in terms of adhesive, repulsive,
locomotive, and drag-like forces applied between cell centers (Metzcar et al., 2019).

A center-based modelling approach which allows a better approximation of cell biome-
chanics is the sub-cellular element model (Figure 1.6e). Here each cell is further divided into
multiple sub-cellular elements that interact based on adhesive and repulsive forces (Newman,
2005, Milde et al., 2014).

Vertex-based models are an alternative off-lattice approach, suitable for modelling tightly
packed cells in epithelial tissues (Figure 1.6f). In this model class, cells are represented as
polygons whose vertices move according to equations of motion, achieving a higher resolution
in cell shape and complex cell packings. Mechanical properties at the sub-cellular level
can be modelled. However, the greater level of detail achieved by vertex-based modelling
approach comes with an additional computational cost (Fletcher et al., 2014).
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Fig. 1.6 Schematic representation of the main cell-based modelling approaches. In on-lattice models,
cells are confined to a fixed grid. Lattice Gas Cellular Automata (a), Cellular Automata (b), Cellular Potts
(CP) (c). In off-lattice models, cells are able to move continuously in space in response to applied forces.
Centre based (d), Vertex (e), Sub-cellular element (f). Off-lattice approaches achieve higher resolution of
cell mechanics but they are more computationally expensive. Figure adapted from Chamseddine and Rejniak
(2019).

1.10 Aims of the project

Stratified squamous epithelia are rapidly regenerative tissues which are constantly turned
over. To ensure homeostasis, the number of progenitor cells in the basal layer has to exactly
match the number of cells lost from the tissue. Deregulation of these processes by mutant
accumulation can result in uncontrolled chronic proliferation leading to cancer. The main
focus of my research was to understand how mutations compete and spread in tissues, and
how this could progress to cancer. To this end, I initially focused on analysing homeostatic
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dynamics and subsequently I explored the effects of mutant and wounding events. My thesis
is organised as follows:

In chapter 2, I sought to provide an explicit outline of the methods used for the purposes
of this PhD project. Specifically, I presented the different approaches for computationally
generating clone size distributions following the SP model. I then discussed the statistical
inference techniques used for estimating model parameters. I finally described the spatial
stochastic modelling approach used for simulating epithelial dynamics.

In chapter 3, I sought to challenge the underlying assumptions of the SP model to
deeply assess its validity. I pinpointed issues with the proposed method for estimating
model parameters and differences between experiments and model. I systematically explored
different strategies for parameter inference and identified an appropriate method for accurately
parameterising the homeostatic system. Accurate parameterisation will enable analysis of
new datasets as well as exploration of mutagenesis.

In chapter 4, I further challenged the SP model and introduced spatial constraints to
explore how these altered neutral dynamics. I implemented the SP model in the two-
dimensional space in order to account for the spatial patterning of cells and gain new insights
into the coordinated behaviour of cells in the context of a tightly packed tissue. The spatial
model introduced transient differences in cell density across different parts of the tissue.
Local extinction and crowding phenomena were observed. Importantly, the key signatures
of homeostatic dynamics were successfully reproduced, suggesting that neutral dynamics
remain unchanged when space is explicitly considered.

Finally, in chapter 5, I challenged the spatial SP model even further by considering
non-neutral growth so that competition of advantageous mutations within the tissue could
be explored. I studied non homeostatic dynamics in stratified squamous epithelial tissues
by spatially modelling the growth and competition of non-neutral mutations as well as the
effects of wounding in the tissue. I showed that in order to recapitulate non-neutral mutant
dynamics whilst maintaining tissue turnover the spatial models need to take account of
feedbacks between neighbouring cells in the tissue. Based on observed growth patterns, I
suggested two distinct feedback types that could mechanistically distinguish the behaviour
of p53 and Notch pathway mutations. The two distinct feedbacks mechanisms that describe
mutant dynamics may suggest the distribution of mutations observed in human datasets.





Chapter 2

Methods

2.1 Generating clone size distributions

2.1.1 Markov processes

In the SP model (Section 1.5, page 8), tissue clonal evolution is described as a continuous time
Markov process. This is a stochastic process {X(t) : t ≥ 0}, defined by the memorylessness
property (also known as the Markov property), which means that the future probability of
an event is dependent solely on the current state of the system. Hence, the state at time t

depends on the state at the most recent time prior to t, ignoring the states at previous time
points.

If we consider a finite state space S = {1, ...,K}, a Markov process can be described as
follows:

P(X(s+ t) = j|X(s) = i,X(r) = k) = P(X(s+ t) = j|X(s) = i), (2.1)

where times s, t > 0 and r < s. States i, j,k ∈ S.
Clonal evolution can be considered as a time homogeneous Markov process, that is to

say, the way the process evolves probabilistically from a state i at time t is the same as if the
process started with the state i at time 0. Thus:

P(X(s+ t) = j|X(s) = i) = P(X(t) = j|X(0) = i) = Pi j(t) (2.2)
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2.1.2 Stochastic simulations - Gillespie algorithm

Simulations of cell clonal populations following the SP model were performed based on the
Gillespie algorithm or stochastic simulation algorithm (SSA) (Gillespie, 1977, Erban et al.,
2007). Gillespie is a widely used stochastic algorithm for simulating the time evolution of a
system and is appropriate for describing continuous Markov Processes (Banks et al., 2012).

Gillespie is an exact algorithm, where every reaction of the system is simulated, one after
another, in discrete time steps. Multiple simulation runs allow the estimation of average
system properties, even in complex systems where an analytical solution is not possible.
From a computational point of view, Gillespie is easy to code and requires relatively small
amount of memory. On the other hand, due to the fact that every reaction has to be simulated
and there is need for multiple runs in order to estimate system averages, the computation
time is quite long. This, in a way, imposes a limitation to the total number of reactions per
run (Gillespie, 1977). In cases where the system state does not change much between time
points, the speed can be increased by performing multiple reactions in a single, pre-defined
time interval (tau-leaping) (Gillespie, 2001, Padgett and Ilie, 2016). Performance can also be
improved by combining deterministic and stochastic approaches (hybrid models). Examples
of such hybrid approaches are the Hybrid tau-leaping method, proposed by Rossinelli et al.
(2008) and the Hybrid Rejection-based Stochastic Simulation Algorithm, introduced by
Marchetti and colleagues (Marchetti et al., 2017, 2016).

The Gillespie algorithm was originally applied to model chemically reacting systems.
The continuous increase of processing power has made the analysis of more complex systems
feasible and thus Gillespie is currently used to simulate the populations and transitions of
different agents in biological applications.

The following steps summarize how the algorithm was implemented to simulate the time
evolution of clonal populations:

1. Initialize the number of cell types (basal proliferating cells (A), basal differentiating
cells (B)) and define the event parameters (λ , r, ρ).

2. Generate two random numbers r1, r2 uniformly distributed in (0,1) that determine:

(a) When the next event is going to occur (time step, dt).

(b) Which event is going to take place. For this system there are two main event
types, division and stratification, which occur at rates λ and Γ respectively.

3. Proceed to the next time point (t +dt) using the randomly generated time step.
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4. Update the number of cell populations according to the randomly selected event.

5. Repeat steps 2-4 until there are no more cells or a predefined time threshold has been
reached.

The time is determined from an event rate (the number of total events per time unit),
calculated as the sum of the products of cell populations and their rates,

e = λA+ΓB, (2.3)

where e is the event rate. The time step is calculated as follows:

dt =−1
ln(r1)

e
, (2.4)

Each event’s probability is calculated as follows:

pAA = pBB =
rλA

e
, pAB =

(1−2r)λA
e

, pS =
BΓ

e
, (2.5)

where pAA, pAB, pBB are the probabilities for the three division types and pS is the stratifi-
cation probability. The next event is computed as follows:

A →



AA, if 0 ≤ r2 < pAA

AB, if pAA ≤ r2 < pAA+ pAB

BB, if pAA+ pAB ≤ r2 < pAA+ pAB+ pBB

pS, if pAA+ pAB+ pBB ≤ 1

(2.6)

2.1.3 Analytical approach

Antal and Krapivsky (2010) attempted to obtain an exact analytic solution of the branching
process describing the SP model ((1.1), page 9), which has recently been extended to test
alternative scenarios by Greulich and Simons (2016), Parigini and Greulich (2020). As the
SP model obeys a continuous time Markov process, the time evolution of proliferating (A)
and differentiating (B) cell populations can be formulated in terms of the stochastic Master
equation:
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dPnA,nB

dt
= r(nA −1)PnA−1,nB +(1−2r)nAPnA,nB−1 + r(nA +1)PnA+1,nB−2

+Γ(nB +1)PnA,nB+1 − (nA +ΓnB)PnA,nB

(2.7)

where PnA,nB denotes the probability of finding clones containing nA proliferating cells and
nB differentiated cells.

Antal and Krapivsky (2010) sought to provide an exact formula for calculating clone size
probabilities, PnA,nB(t), and clone survival probabilities. In particular, the Master equation
was solved exactly for its generating function. A generating function is a power series
representation and is a convenient way to mathematically describe the branching process.
Once the solution of the generating function has been found, the clone size probability
distribution can be obtained from it. The generating function of PnA,nB(t) was defined as:

F(x,y, t) =
∞

∑
nA,nB=0

xnAynBPnA,nB(t) (2.8)

The exact solution was obtained as shown in (2.9) and the full derivation is given in Antal
and Krapivsky (2010). The equation was rewritten in terms of u, v, g and w for the purpose
of simplification (2.9).

F = 1−u+
u(1+ v)− γ(1+2w)

2r
+

γ

2r
(1+2w)M1+w,0(g)−2CW1+w,0(g)

Mw,0(g)+CWw,0(g)
,

where g =
uv
γ
, v =

√
1−4r, w =

γ(1−2r)−2r
2γv

u = (1− y)e−γt .

(2.9)

C is a constant that was determined as shown in (2.10):

C =
−θMw,0(ĝ)+(1+2w)M1+w,0(ĝ)

θWw,0(ĝ)+2W1+w,0(ĝ)
,

where θ = 1+2w− ĝ+
2r(x− y)+ y−1

γ
, ĝ =

(1− y)v
γ

.

(2.10)

The proposed analytical solution (2.9) was implemented in MATLAB and used by Lim et al.
(2013). In particular, for every r, ρ , λ combination (0 < r < 0.5 and 0 < ρ < 1) and for
every time point (2.9) was called to compute the exact clone size probability distribution for
a selected clone size range. This range was determined based on the average and maximum
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clone size observed in experiments at that given time point. Also, in this thesis, (2.9) was
re-implemented in Python and was used in the same way as in the MATLAB code. The
analytical formula relied upon the use of confluent hypergeometric functions (Whittaker
functions denoted by W and M in (2.9)), which were evaluated using the appropriate libraries
in MATLAB (Symbolic Math Toolbox (The MathWorks, 2019)) and Python (mpmath
(Johansson et al., 2013)). However, it has been shown that the computation of these functions
is not trivial and remains a research topic in itself (Pearson et al., 2017). As discussed in the
next chapter, existing implementations based on the calculation of these functions are time
consuming and prone to errors.

2.2 Single progenitor parameter inference

To fit the SP model simulations against clonal data sets and identify appropriate parameter
values, a series of different inference techniques were tested. Given that λ was measured
independently from H2BGFP dilution assays (Blanpain and Simons, 2013), its value was
known and the fitting was performed on parameters r and ρ .

2.2.1 Maximum likelihood estimation (MLE)

MLE is a method of estimating the parameters of a probability distribution by maximizing a
likelihood function, so that model parameters with the maximum likelihood are most likely
to reproduce the observed data and thus are chosen as the best fit. The likelihood L(θ) of the
SP model parameters θ = (r,ρ) is the probability that the experimental data D is reproduced
by the given set of parameters θ (L(θ) = P(D|θ)).

To calculate the likelihoods for the SP model parameters, a grid search was performed on
a range of valid parameter values (0 < r < 0.5 and 0 < ρ < 1) and the theoretical estimates
of basal clone size distributions - obtained either analytically or by performing stochastic
simulations - were contrasted with the ones observed experimentally by assessing the log-
likelihood of every parameter combination θ . The most probable parameter combination
was then selected as the parameter set with the maximum log-likelihood,

l(θ ;x) = ∑
t

∑
n
(xn(t)∗ logpn(t,θ)), (2.11)

where xn(t) corresponds to the frequency of measured clone sizes with n basal cells at time t
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and pn(t,θ) is the probability of observing clones of size n at time t for a given parameter
set values θ .

2.2.2 Approximate Bayesian computation (ABC)

The likelihood function lies at the core of parameter inference. However, in many applica-
tions, it is either impossible or computationally expensive to calculate the parameter space
likelihood. Approximate Bayesian computation (ABC) is an inference method based on
Bayesian statistics that can be used to estimate the posterior distributions of model parameters.
ABC bypasses the evaluation of the likelihood function, therefore it is known as a likelihood-
free method. The likelihood function is approximated by simulations, the outcomes of which
are compared with the observed data. ABC methods aim - instead of finding point estimates
of model parameters - to obtain the posterior distributions for those parameters (Turner and
Zandt, 2012, Sunnåker et al., 2013).

The posterior distribution of a particular parameter value θ given data D can be calculated
according to Bayes’ theorem as follows:

p(θ |D) =
p(D|θ)π(θ)

p(D)
, (2.12)

where p(θ |D) corresponds to the posterior, p(D|θ) the likelihood, π(θ) the prior and p(D)

the model evidence (i.e. the probability of the observed data given the model, also referred to
as the marginal likelihood).

Approximate Bayesian computation rejection algorithm

The most basic form of ABC is the ABC rejection sampling algorithm (Pritchard et al., 1999),
which is specified by the following steps:

1. A set of candidate parameter values are initially sampled from a prior distribution
π(θ), usually chosen among a set of well known families of distributions.

2. A sampled parameter point θ ∗ is then used to simulate a data set D from a model
specified by θ ∗.

3. The simulated data X is then compared to the observed data D by calculating a distance
function d(X ,D). If the calculated distance is less than an accepted tolerance threshold
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ε (d(X ,D) ≤ ε), θ ∗ is retained, otherwise θ ∗ is discarded. The accepted tolerance
(ε > 0) is defined by the user.

The choice of ε lies at the intersection of computational efficiency and accuracy. Larger
ε values would lead to wide distributions of samples, thus decreasing accuracy, whereas
smaller ε values result in sampling very few points from the posterior distribution,
increasing computational time. Typically the value of ε is chosen on a case-by-case
basis such that it should be a small value but it should also achieve a reasonable
acceptance rate. However, several approaches have been proposed for the choice of an
appropriate ε value (Prangle et al., 2014, Faisal et al., 2013, Blum, 2010, Beaumont
et al., 2002).

4. Go to step one unless there are no more candidate parameter values left or a predefined
number of accepted values has been reached.

Distance based on summary statistics can be used in cases where defining an appropriate
distance function between the datasets is not possible (Beaumont, 2010).

Sequential Monte Carlo ABC (SMC-ABC)

Sampling parameter values solely from the prior distribution π(θ) when proposing a new θ

ignores both the previously accepted sampled values and the data, thus becoming inefficient.
Moreover, in cases where the prior and posterior distributions are significantly different,
the acceptance rate can be quite low. Sequential Monte Carlo ABC (Sisson et al., 2007)
overcomes this issue by picking parameters in high posterior probability regions. Here, while
iterating over successive populations, parameter points are resampled and perturbed from
a weighted set of points already drawn and the tolerance ε is reduced. Perturbation allows
the better exploration of the parameter space. Parameter values with distances greater than
the previous ε are rejected, thus aiming to get closer to the posterior distribution on each
population iteration of the sequential Monte Carlo sampler (Beaumont, 2010, Toni et al.,
2009, Toni and Stumpf, 2009, Filippi et al., 2013).

The algorithm proceeds as follows (as proposed by Toni et al. (2009)):

1. Initialize ε1, ...,εT . Set the population indicator t = 0.

2. Set the particle indicator i = 1, where particles are the sampled parameters.

(a) If t = 0, sample θ ∗∗ independently from π(θ). Else, sample θ ∗ from the previous
population θt−1 with weights wt−1 and perturb the particle to obtain θ ∗∗∼ (θ |θ ∗),
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where Kt is a perturbation kernel which specifies the transition probabilities from
one state to the next.

If π(θ ∗∗ = 0) return to 2a.

Simulate a candidate data set x ∼ f (x|θ ∗∗).

If d(x,x0)≥ εt return to 2a.

(b) Set θ
(i)
t = θ ∗∗ and calculate the weight for particle θ

(i)
t ,

w(i)
t =


1, if t = 0,

π(θ
(i)
t )

N
∑

j=1
w( j)

t−1Kt(θ
( j)
t−1,θ

(i)
t )

, if t > 0.

If i < N, set i = i+1, go to 2a.

3. If t < T , set t = t +1, go to 2.

Particles sampled from the previous distribution are denoted by a single asterisk, and
after perturbation these particles are denoted by a double asterisk.

To infer the parameters for the SP model an SMC-ABC approach was followed. Sim-
ulations of the SP model were performed starting from initial r and ρ values (0 < r < 0.5
and 0 < ρ < 1) drawn from a uniform distribution, used as prior. For every simulation round,
a distance metric was computed for every value pair based on the sum of the Kolmogorov-
Smirnov (KS) test’s distance summary statistic. KS is a statistical test that determines whether
two samples or a sample with a reference probability distribution differ significantly. The
KS test calculates the chance that two datasets are drawn from different distributions by
calculating the maximum difference in empirical distribution functions. This distance is used
with the number of observations to calculate a p-value.

2.3 Cellular Automata

In this thesis, in order to model the dynamics of stem cells in epithelial tissues, a cellular
automaton (CA) approach was used. This modelling technique was chosen as it can capture
appropriately the level of complexity required for analysing the available lineage tracing
datasets. In this section, I provide the background of CA theory, following mainly Deutsch
(2005).
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2.3.1 Definition

A cellular automaton is a d-dimensional spatial model of a system, with two-dimensional
CA being the most frequently used. In these models the region of space being modelled
is subdivided into a number of lattice sites, whose properties are tracked as the simulated
time progresses. CA describe a collection of objects, termed cells, where each of them
evolves over time according to a set of rules, based on the states of neighbouring cells.
Thus, following simple local rules, it is possible to see complex emergent behaviours. This
principle appears to be consistent with the concept that the complex behaviour observed in
many natural systems stems from the cooperative effect of simpler rules (Wolfram, 1984).

A cellular automaton may be described by the following characteristics (Deutsch, 2005):

• A discrete lattice L of sites (termed cells) and boundary conditions.

• Each cell is characterized by a finite set of states (ε).

• Each cell has an interaction neighbourhood (NI) which is constituted by a finite set of
adjacent cells.

• Each cell evolves through time according to a local transition function set of rules (R)
that determine the dynamics of the states of the cells.

An example of a simple, two-state cellular automaton is depicted in Figure 2.1.
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Fig. 2.1 Example of a two-dimensional cellular automaton model. Cells are placed on a square lattice.
There are two state possibilities, 0 and 1 and the neighbourhood is defined by the 8 adjacent cells. Figure
modified from Shiffman et al. (2012).

2.3.2 Lattice and boundary conditions

A regular lattice L ⊂ Rd consists of a set of cells (regular polygons) which are placed on a
d-dimensional Euclidean space and each of them is labelled by its position r ∈ L. For any
cell with coordinate r, the nearest neighbourhood Nb(r) is defined as follows:

Nb(r) := {r+ ci : ci ∈ Nb, i = 1, ...,b},

where b is the number of nearest neighbours and Nb the nearest-neighbourhood template
with elements ci ∈ Rd .

The simplest type of cell shape is square. However, lattices composed of triangles or
hexagons can be used (Figure 2.2). These regular tessellations have been widely used to
successfully investigate aggregate properties of a system. However, such ordered lattices
might not be able to properly explain certain properties. The underlying lattice forces cell
movement into fixed directions, thus generating artificial spatial anisotropies which might
influence certain characteristics, such as clone shapes. To reduce this effect, irregular lattice
approaches based on Voronoi diagrams were developed (Kansal et al., 2000, Gevertz and
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Torquato, 2006, Block et al., 2007, Radszuweit et al., 2009). Additionally, algorithms for
reducing lattice anisotropies have been introduced (Smith et al., 2019, Yates and Baker, 2013,
Marek, 2013).

Fig. 2.2 Possible lattice types for two-dimensional cellular automata. Left: a square lattice, each cell is
represented by a rectangle, middle: a hexagonal lattice, each cell is represented by a hexagon, right: triangular
lattice, each cell is represented by a triangle. Figure modified from Deutsch (2005).

In CA computational experiments, the lattice is usually finite. Therefore, boundary
conditions must be imposed in order to define the neighbourhood of the boundary cells.
Different boundary rules may be applied. A rule often implemented for approximating
an infinite lattice is periodic boundary conditions (Figure 2.3 top). In periodic boundary
conditions, the opposite parts of the lattice are considered to be connected forming a ring in
one dimensions and a torus in the two dimensional space. Another possible way of defining
boundary conditions is to consider the lattice reflecting at each boundary (reflective boundary
conditions), as shown in Figure 2.3 middle. Furthermore, the opposite parts of the lattice may
be considered as a rigid wall, thus imposing fixed boundary conditions (Figure 2.3 bottom).
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Fig. 2.3 Boundary conditions in a one-dimensional lattice, L with cells r ∈ L = {0, ...,9}. Top: Periodic
boundary conditions, where the opposite parts are glued together to form a ring, Middle: reflective boundary
conditions, where cells at the boundaries are mirrored, Bottom: fixed boundary conditions, where lattice
boundaries are considered as a rigid wall. The cells at the left and right of the dashed lines represent the nearest
neighbours of the boundary cells, r = 0 and r = 9. Figure taken from Deutsch (2005).

2.3.3 Interaction neighbourhood

Each cell’s behaviour in the lattice is influenced by its local neighbourhood NI
b(r), defined by

a set of adjacent lattice cells. The cell itself may or may not be included in the neighbourhood.
The topology of the interaction neighbourhood is specified at the beginning of the simulations
and remains unchanged. Thus it is defined as an ordered set:

NI
b(r) = {r+ ci : ci ∈ NI

b,} ⊆ L

Several neighbourhood topologies exist, with the von Neumann (Figure 2.4a) and Moore
neighbourhood (Figure 2.4b) being the most frequently used in square lattice CA. Extended
neighbourhoods may also be considered, illustrated in Figures 2.4c,d.
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(a) (b)

(c) (d)

Fig. 2.4 Examples of neighbourhood types on a two-dimensional square lattice. Cell of interest is coloured
in dark blue, neighbouring cells are in light blue. a) von Neumann neighbourhood, b) Moore neighbourhood, c)
2-radial neighbourhood, d) 2-axial neighbourhood. Figure modified from Deutsch (2005).

2.3.4 States

At each time step, each cell r ∈ L is assigned a state value s(r) ∈ ε , with ε being a finite set
of states. The collection of all states at a given time is called a configuration. The set of all
possible state values of all lattice cells determine the global lattice configuration:

s := (s(r1), ...,s(r|L|)) = (s(ri))ri∈L

Hence, if one considers a simple one-dimensional CA with periodic boundary conditions
and two possible states (on or off) for each lattice site, i.e. s(r) ∈ ε = {on,off}, then the
lattice configuration is defined as follows:
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ε = {on,off}, L = {0, ..,9}, L = 10, S = {on,off}10

2.3.5 System dynamics

In CA, each cell in the lattice interacts with the cells that are in its local neighborhood. The
temporal evolution of the system is determined by transition rules R which are executed
locally on cells at discrete time steps and update the state of each cell as a function of its
neighbourhood configuration:

R : ε
ν → ε, where ν = |NI

b|

The local transition rules may either be deterministic (i.e. a unique next state for each
cell is decided) or probabilistic / stochastic (i.e. a probability distribution of next states is
specified). The system can be updated either synchronously, where all cells are assigned
to their next state simultaneously, or asynchronously, where only one cell is updated per
iteration.

2.3.6 Asynchronous updating

The single progenitor CA models I developed for the purposes of this thesis are probabilistic,
asynchronous CA. In order to simulate the dynamics of an asynchronous CA, an appropriate
updating scheme (U ) has to be introduced. If fu(x, t) represents the cell state x at time t given
the updating scheme U , the time evolution of (xt)t∈N can be defined as follows:

∀r ∈ R, xt+1
r =

 f (xt
r+n1

, ...,xt
r+nb

) if r ∈ U(t),

xt
r otherwise

The selection of the next cell to be updated was independent of the remaining cells. Every
cell was assigned the time t to be updated based on an exponential distribution with mean
1/λ or 1/Γ for proliferating (A) and differentiating (B) cells respectively. The cell with the
smallest t was chosen as the one to be updated in the next simulation step.
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2.4 NetLogo modelling environment

The SP as well as non-neutral CA models were developed in NetLogo 6.0 (Wilensky, 1999),
a free, multi-agent programming language and modelling environment for simulating the
time evolution of complex phenomena in the fields of natural and social sciences. It can
be used for both educational and research purposes, having a wide range of applications.
NetLogo was initially created in 1999 and since then is under active maintenance and constant
development. As a result of this, it is extensively documented with many helpful tutorials
and also offers a large collection of example models (the Models Library), which can be used
as a guidance for developing new ones.

NetLogo is written in Scala and Java and runs as a standalone application on all major
computing platforms. It comes with a user friendly interface, where one has the choice of
using pre-existing models found in the Models Library, modifying them according to their
needs, or developing their own models. The application also supports model visualisation.
This practically means that in the case of a CA model, NetLogo is able to generate and
visualise the grid with boundary conditions. The NetLogo world is made up of programmable
agents which interact and follow rules instructed by the model. An interface module which
enables active interaction with model agents and simulations is available. NetLogo also
supports command line use, which facilitates performing multiple simulation repetitions.

There is a variety of other freely available software tools for creating CA models. How-
ever, most of them are either obsolete or have not gained widespread usage. Two notable
exceptions are Chaste (Mirams et al., 2013) and Repaste (North et al., 2013). Both of them
are actively maintained and have been cited by several publications. The abundace of tutorials
and support by the large community of NetLogo users plus its intuitive interface that allowed
quick prototyping and visualization were the main reasons for selecting it.

2.5 Code

The code for implementing the non spatial SP clonal population simulations was performed
in Python 3.6.5 and F# 4.0. Parameter inference scripts were written in Python 3.6.5. The
existing MATLAB scripts were executed in MATLAB R2017a. CA models were developed
in NetLogo 6.0. The analysis of spatial simulation outputs was written in Python 3.6.5. The
code for the CA models and analysis scripts can be found at https://gitlab.com/vkostiou/
SP_spatial_models.git. The runtime for a typical simulation (100x100 grid size, 80 weeks
simulation duration) was 2.5 hours on average on a single core of an Intel(R) Xeon(R)

https://gitlab.com/vkostiou/SP_spatial_models.git
https://gitlab.com/vkostiou/SP_spatial_models.git
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processor (E5-2650 v2 @ 2.60GHz). The computational complexity was O(s) and O(t),
where s is the grid size and t is the duration of the simulation.

2.6 Graphical Figures

Graphical figures were generated using BioRender.com.



Chapter 3

Quantitative analysis of clone growth in
epithelial tissues

Abstract

The stem cell dynamics of squamous epithelial cells is a major subject of study in biomedicine.
The single progenitor model has been argued over several years to reproduce the observed
stem cell dynamics in such tissues accurately. An analytical solution with maximum like-
lihood calculations has been widely used to infer the single progenitor models parameters,
thus enabling access to quantitative properties of a squamous epithelial tissue in homeostasis.
In this chapter, I applied the existing method to both experimental and synthetic datasets, I
identified issues with the analysis, I systematically analysed the performance and compared
to other inference techniques. I find that the use of the published analytical solution allows
identification of a single parameter with narrow confidence intervals. However, the analy-
sis of synthetic datasets with realistic cell-cycle distribution times and biological variation
between samples suggests that these are overly precise. Furthermore, simulation-based
maximum likelihood methods require extensive sampling to find a distribution of parameters
making them intractable for many analyses. I conclude that an ABC based approach using a
non-Markovian simulator gives appropriate error bars at an acceptable computational cost.
The purposes of this analysis were two-fold. Firstly it allowed me to identify an appropriate
method for analysing newly collected datasets. Secondly and most importantly, through the
accurate parameterisation of the system, it provided the ability to further investigate how
mutations affect tissue dynamics.
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3.1 Introduction

Adult tissues rely on stem cells to establish lifelong proper function of organs. A major
subject of study in biological research is the dynamics of stem cells in squamous epithelia.
These are rapidly regenerative tissues covering the external surface of the body, the mouth,
and the esophagus and organised in layers of keratinocytes. Importantly, most common
human cancers appear in these tissues. Therefore, understanding the rules of cell fate
decision is fundamental to explain not only healthy tissue growth and maintenance but also
the mechanisms of wound healing, mutagenesis and cancer. A possible way to answer these
types of questions would be by quantifying stem cell population dynamics.

The advent of modern genetic labelling techniques has provided useful insights on stem
cell fate decision processes in squamous epithelia. Lineage tracing allows for a cell type
of interest and its descendants to be genetically labelled using transgenic mice, in order to
track the fate behaviour of multiple cell families (clones) at different time points (Alcolea
and Jones, 2014). The distribution of cell clone sizes can then be used to further investigate
clonal dynamics across the population of cells within a tissue.

There have been several studies over the past years, performing lineage tracing on
epithelial tissues (Doupé et al., 2010, 2012, Mascré et al., 2012, Lim et al., 2013, Alcolea et al.,
2014, Rompolas et al., 2016, Sada et al., 2016, Sanchez-Danes et al., 2016). Quantitative
analysis of clone size distributions in murine oesophageal and epidermal tissues across
different studies revealed that stem cell dynamics may be accurately described by a simple
mathematical model, the Single Progenitor (SP) model. This supports the existence of a
single, equipotent progenitor cell population which keeps proliferation and differentiation
across the tissue balanced. Stem cells in the basal layer stochastically divide or differentiate
through stratifying into the upper layers of the tissue before eventually being shed.

To describe tissue homeostasis, the SP model require three parameters - a division rate
(λ ), a stratification rate (Γ) and the probability of symmetric division (r). Using these
three parameters, this model predicts average clone size, clone size distributions, tissue
homeostasis, and cell survival probabilities, giving access to valuable quantitative information
on phenotypic data. Estimating the model parameters accurately is critical, as it would assist
in both elucidating how stem cell behave within normal tissues and more importantly how
tissue dynamics change when mutations are accumulated.
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3.2 Quantitative analysis of clonal data in WT tissues

3.2.1 Existing computational method for parameter inference

The progress that has been made in lineage tracing techniques over the past decades, gave
rise to an increasing number of such studies. This in turn, revealed the need for appropriate
solutions to analyze these datasets. To this end a computational approach has been used
by previous studies (Doupé et al., 2012, Lim et al., 2013) to calculate the three SP model
parameters (λ , r, ρ). This method included an analytical solution proposed in the literature
(Antal and Krapivsky, 2010), which allowed for the maximum likelihood calculations. The
method consisted the following steps:

1. For a range of valid ρ , λ and r values (0 < r < 0.5 and 0 < ρ < 1), a probability of
observing a given clone size at a given time point is calculated from an analytical
solution (Antal and Krapivsky, 2010).

2. The experimental data is used to assess the log-likelihood of every parameter combina-
tion by comparing the observations (number of clones of a given size at a given time
point) with the probabilities generated at the previous step. This is described in detail
in Section 2.2.1, page 29. The most probable parameter combination is then selected
using a maximum likelihood estimation (MLE) approach.

Initially in my analysis, I re-applied existing scripts of the most recent implementation of
the above method, written in MATLAB, to infer the single progenitor model’s parameters on
a range of experimental datasets.

3.2.2 Experimental datasets

Clonal data of mouse oesophagus and back epidermis were included in the analysis:

• Lineage tracing of mouse oesophageal epithelium basal cells using a multicolour
labelling (confetti). This technique allows the use of multicolour reporter constructs,
resulting in cells randomly expressing one of four fluorescent proteins (green, GFP,
cyan, CFP, yellow, YFP or red RFP). Hence, the risk of clonal merging is considerably
reduced, compared to single colour systems.

Clonal labelling was induced and the fate of labelled cells was observed at intervals of
10 days to 180 days. The number of cell clones that fall into different clone size ranges
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for basal and total (basal + supra basal) cells was reported. Experiments performed by
Agnieszka Wabik and Phil Jones (Wellcome Trust Sanger Institute, Hinxton, UK).

• Lineage tracing of mouse back skin basal cells (using YFP). Clonal labelling was
induced and the fate of labelled cells was observed at intervals of 21 days to 545 days.
The number of cell clones that fall into different clone size ranges for basal and total
(basal + supra basal) cells was reported. Experiments performed by Kasumi Murai and
Phil Jones (Wellcome Trust Sanger Institute, Hinxton, UK).

• In order to examine the fate of basal cells in short time scales, EdU lineage tracing
data of mouse back skin cells was included in the analysis. Animals were induced with
5-ethynyl-2’-deoxyuridine (EdU) and the fate of labelled cells was tracked after 2, 4, 5,
6, 7, 8 and 10 days. The number of basal and suprabasal cells at each time point was
reported. Experiments performed by Greta Skrupskelyte and Phil Jones (Wellcome
Trust Sanger Institute, Hinxton, UK).

The quantitative analysis of the above experimental datasets was based on basal cell
count information.

3.2.3 Oesophageal epithelium

The existing method was applied to parameterise the oesophageal experimental dataset.
Considering a fixed overall division rate 1.9±0.1 times/week, estimated by histone dilution
experiments, a grid search for r and ρ parameters values was performed (Figure 3.1). The
model predicted that the proportion of progenitor cells in the basal layer ρ is 0.7, with (0.5,
0.9 95% CI). Progenitor cells divide symmetrically to give rise to either two proliferating or
two differentiating daughters with probability r=0.15, with (0.1, 0.2 95% CI). The parameter
estimates seemed to fit well the experimental observations in terms of clone size distributions
at all time points (Figure 3.2). Morevover, the proposed parameter values appeared consistent
with the ones proposed historically by a previous quantitative analysis on mouse oesophageal
clonal data (ρ = 0.65, r = 0.1), also using the same inference technique (Doupé et al., 2012).
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Fig. 3.1 Grid search results for the oesophagus dataset. Inference of the SP model parameters from experi-
mental basal clone sizes, taken from the oesophageal data set. Heatmap of parameter likelihoods showing the
most likely r and ρ values obtained, with prior knowledge of division rate, λ .

Fig. 3.2 Best fit of the model against the oesophagus dataset. Plots show best fit of the model (red line) to
the experimental observations (black dots) at different time points. Data showed in a) log and b) linear scale.
With a fixed overall division rate 1.9 times/week obtained by histone dilution experiments, the model predicted
the proportion of progenitor cells in the basal layer ρ=0.7 and symmetric divisions probability r=0.15.
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3.2.4 Back epidermis

The model was also applied to datasets of back skin, which is a different tissue that has
a similar architecture to the oesophageal epithelium (Section 1.2, page 3) and thus can
be considered as a comparable system. The method obtained very acceptable fits to the
experimentally observed clone size distributions (Figure 3.3) and predicted the most likely r

and ρ parameter combination (Figure 3.4), suggesting that the data are described by these
parameters. However, the analysis failed to produce an appropriate likelihood distribution for
each parameter (Figure 3.4), with likelihood distributions adopting a step-like shape. That
is to say, no smooth parameter likelihood distributions were produced as several parameter
combinations could not be analysed and were excluded. As a result no meaningful confidence
intervals could be estimated. These observations might reflect issues in the used grid search
approach. The method calculated pathological values (i.e. out of bounds probabilities) for
several parameter combinations, which was mitigated by introducing small perturbations in
the problematic ones. As a negative side-effect, this substantially increased runtime and did
not allow using a finer grid.

Using an overall cell division rate of 1.2 times/week, calculated from histone dilution,
the model predicted an r value of 0.1 and a ρ value of 0.85. As already mentioned in Section
1.5, Γ = ρ

1−ρ
λ , therefore a ρ value of 0.85 would indicate a stratification rate at at 6.8

times/week which subsequently indicates that the stratification events should start at 1.029
days after division. Looking at EdU lineage tracing data in the same tissue, gave access to
a more accurate estimation of ρ value. As discussed above, EdU lineage tracing provides
information on cell clone dynamics in short time scales. This allows the detection of the
first rounds of division and stratification. The EdU lineage tracing data clearly showed that
stratification cannot take place on the first day as there were no supra basal cells detected on
day 2 (Figure 3.5). On the contrary, the percentage of supra basal cells over time suggested
that stratification events start after 5 days. This observation indicates that ρ = 0.54, which
is different to the predictions of the current parameter inference engine (ρ = 0.85). This
discrepancy in ρ might stem from differences in the experimental techniques or it might
indicate an issue in the current parameter inference method.
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(a)

(b)

Fig. 3.3 Best fit of the model against the back epidermis data set. Plots show best fit of the model (red line)
to the experimental data (black dots) at different time points. Data showed in a) log and b) linear scale. With a
fixed overall division rate 1.2 times/week, obtained by histone dilution experiments, the model predicted the
proportion of progenitor cells in the basal layer ρ=0.85 and symmetric divisions probability r=0.1.
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Fig. 3.4 Grid search results for the epidermal dataset. Inference of the SP model parameters from experi-
mental basal clone sizes, taken from the back epidermis data set. Heatmap of parameter likelihoods showing
the most likely r and ρ values obtained, with prior knowledge of division rate, λ . Pathological points prevented
the analysis of certain parameter sets. The likelihood distributions adopted a step-like shape.

Fig. 3.5 EdU lineage tracing data of back epidermis. Percentage of supra basal cells over time. No supra
basal cells were detected at 2 days. Stratification events start after 5 days, indicating a ρ value of 0.54 in
contrast to the estimated ρ value of 0.85.
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3.3 Synthetic data

Driven by the observed incompatibility in parameter estimation, I further investigated the
robustness of the existing computational approach, by generating experimental data through
simulations. This would help assessing the validity of the method on well sampled datasets
with known r, ρ and λ parameters.

Computationally generated clonal datasets were produced in such a way to mimic the
information contained in the experimental data, following the model. That is, the simulated
clones consisted of a number of basal cells at several time points that matched the experimen-
tal ones. The artificial cell clonal simulation was based on the Gillespie algorithm (Section
2.1.2, page 26), which is a widely used stochastic algorithm for simulating how a system
evolves during a given period of time.

In our studied epithelial system, described by the SP model, the cell population is
maintained by basal proliferating cells A and basal differentiating cells B. Cells can divide
with division rate λ , and stratify with rate Γ. There are three potential division outcomes,
AA, AB, BB, decided by r. Table 3.1 summarizes the cell types, events and event parameters
of the studied system.

Cell population types A: Number of basal proliferating cells
B: Number of basal cells committed to differentiate

Events AA division
BB division
AB division
Stratification

Event parameters λ : division rate
Γ: stratification rate
r: probability of symmetric division

Table 3.1 Implementation of Gillespie algorithm to simulate epithelial stem cell population dynamics
according to SP model. There are two cell population types, proliferating cells A and differentiating cells, B.
Two main event types may take place: cells either divide or stratify. Division events are further grouped to
symmetric division, AA, symmetric differentiation, BB or asymmetric division, AB.

Gillespie simulations of clonal populations were performed as described in Section 2.1.2.
I iterated over a range of valid r, ρ and λ SP model parameter values (0< r < 0.5, 0< ρ < 1),
yielding a set of 27 parameter combinations, evenly distributed in the parameter space.

Following Gillespie simulations, the synthetic datasets were generated using the following
workflow:
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1. From a set of 1,000,000 simulations a subset of N number was randomly picked at
several time points t. N corresponds to the number of cell clones typically observed at
a time point in a lineage tracing experiment and t corresponds to the time points used
in such experiment.

2. The number of basal cells collected at each time point.

3. A set of size N basal cell observations from different simulations at each time point
was created. A summary of the number of times each basal cell sum was observed per
time point was then collected.

In studying the generated synthetic datasets, I was able to detect important features
that are not observed in the real experimental datasets. Although the simulated clone size
distributions were comparable to the experimental ones, a subset of simulations seemed
to contain big cell clones (clones with large number of basal cell counts). These large
clones were more common at late time points (t>90 days) and were observed as rare events.
Figure 3.6 illustrates the largest clone size observed per timepoint across all 27 synthetic
datasets.
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Fig. 3.6 Big sized clones across synthetic datasets. Largest clone size observed per time point for each
parameter combination. Large clones were infrequently observed at late time points.

3.3.1 Validation of the simulation engine

To ensure the validity of the simulation engine both short and long timescale tests were
performed. The application of these tests is critical in order to give confidence that the
synthetic clonal datasets are able to follow the same behaviour as the clonal counts measured
in lineage tracing experiments.

Short timescale test

The first test examined the behaviour of the computationally generated basal cell clones in
short time scales.

According to the stochastic cell fate theory of the SP model, the average size of basal
cell clones grow linearly over time (Clayton et al., 2007, Klein and Simons, 2011). This
behaviour should be more obvious in very short time points, before stratification occurs
(t < 1/Γ), and thus cell division rate (λ ) is the only parameter that affects the number of
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cells in the clone. Therefore, with a single cell as a starting point, the equation that describes
how the number of cells increases over time is:

< n >= 1+λ t, t << 1/Γ (3.1)

Considering the above, the following short timescale test was performed over all synthetic
datasets: the average number of basal cells per clone should equal 1+λ t and thus should
scale linearly over time. Values of slope, intercept and r-squared of linear regression were
calculated. The expected linear behaviour was successfully reproduced as shown in Figure 3.7.
In particular, slope value approximated the expected λ value when t << 1/Γ.
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(a) (b)

(c)

Fig. 3.7 Short timescale test. Typical average basal clone size plots at early time points, as calculated from
synthetic data in order to perform the short timescale test (a,b,c): The average number of basal cells per clone
scales linearly over time, before stratification occurs (t << 1/Γ), and is described by < n >= 1+λ t linear
equation.

Long timescale test

The expected clone size behaviour at long time points according to SP model is that the
average number of basal cells per clone grows linearly with time: < n >= rλ

ρ
t + 1

ρ
(Clayton

et al. 2007). Therefore, the long timescale sanity check involved calculating the average
clone size at regular time points from 4 weeks to 100 weeks to examine if they scale linearly
with time. Given the fact that at long time points, basal clone size distribution is affected
by stratification events and thus persisting or extinct clones can be observed, two different
approaches were considered. In the first approach, cell clones with zero size were excluded
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and only the surviving ones were included (Figure 3.8a,b), whereas in the second the average
number of basal cells included all cell clones (surviving and extinct) (Figure 3.8c,d). After
the application of the two above approaches I was able to show that the expected behaviour
was accurately reproduced. In addition, the average number of basal cells including all
clones remained constant, showing that the system becomes homeostatic with average clone
population 1

ρ
(Figure 3.8c,d).

(a) (b)

(c) (b)

Fig. 3.8 Long timescale test. The long time scale test successfully reproduces the expected clonal behaviour.
Long term average basal behaviour of survival (a,b) and survival plus extinct (c,d) clones, as calculated from
synthetic data: a,b: The average number of basal cells per clone scales linearly over time with slope τ ∼ rλ

ρ
,

c,d: the average number of basal cells including all clones remained constant, showing that the system becomes
homeostatic with average clone population 1

ρ
.
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3.3.2 Quantitative analysis of synthetic data

Once the results of the sanity checks confirmed that the synthetic datasets accurately mim-
icked the real experimental data, I proceeded to the analysis step. Analysis was performed
exclusively on basal cell counts. Each of the 27 computationally generated datasets was
used as input to the existing computational method in order for the r, ρ and λ parameter
likelihoods to be estimated. As λ value is usually calculated from alternative experiments,
analysis was performed on the remaining r and ρ values. Given that each input synthetic
dataset depicts how stem cell population is distributed at given r, ρ and λ , the method should
be able to infer the values of the unknown parameters.

The results have clearly raised several issues in the published computational approach.
The first problem that arose was the inability of the method to analyze large size clones,
a feature observed in the synthetic datasets, especially at late time points (see Section
3.3). Observations of clones of large size were highly improbable resulting in the sum of
all likelihoods being –inf. As a consequence, the probability values for observing large
clones could not be represented within machine precision (64 bits), rendering the analysis
of the majority of the synthetic data not feasible. Modifying the code by converting to log
probabilities when large sized clones were observed allowed me to analyze the whole cohort
of the synthetic datasets.

Whilst the estimated parameters appeared to achieve a very acceptable fit in clone size
distributions with input data, as shown in Figure 3.9, they did not match the input values
as it would be expected (Figure 3.10). The discordance between input and output r and ρ

parameters was consistent across all synthetic datasets, highlighting an issue in the accuracy
of parameter inference (Figure 3.11).
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Fig. 3.9 Best fit of a synthetic dataset against the model. Plots show best fit of the synthetic data with input
parameters λ = 2/week, r = 0.25, ρ = 0.5 (black dots) to the model (red line) at different time points. Data
showed in a) linear and b) log scale. With a fixed overall division rate 2 times/week the model predicted the
proportion of progenitor cells in the basal layer ρ=85% and symmetric divisions probability r=0.45.

Fig. 3.10 Grid search results for an example synthetic dataset. Inference of the SP model parameters from
basal clone sizes taken from synthetic data with input parameters λ = 2/week, r = 0.25, ρ = 0.5. Heatmap of
parameter likelihoods showing the most likely r and ρ values obtained, assuming prior knowledge of division
rate, λ . Red dot displays the expected r and ρ values, used to generate the synthetic dataset. The most likely
inferred parameters do not match the expected ones.
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Fig. 3.11 Input and estimated parameter values for all synthetic datasets. The Euclidean distance between
input and estimated parameter combinations highlights the issues in the accuracy of parameter estimation.
Higher distance indicates higher discrepancy between input and output parameter values.

Synthetic replicates and increased sampling

In order to further investigate the power of the above-mentioned conclusions, and to establish
whether incorrect predictions arose from poor sampling, the synthetic data analysis was
repeated by generating two types of alternative synthetic datasets:

• Replicates, to show how much the outcomes can vary the same synthetic datasets with
different samples.

Synthetic replicates were produced using the same input parameters but picking a
different subset of simulations. No substantial differences in the estimated parameters
were observed between the replicates and the original datasets.

• Datasets with increased sampling, to find out how many clones would need to be
counted in order to get accurate estimates of different parameters. This analysis was
done to examine whether a potential source of the inaccurate parameter estimation is
the existing sampling regime. That would be a source of experimental error that could
be trivially fixed.
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Synthetic data with increased sampling were produced using the simulation engine and
picking a larger subset of simulations. More specifically, two datasets of 500 and 5000
cell clones were generated. Suprisingly, no improvement in the parameter estimation
was observed even when the sampling regime changed by counting more cell clones.

3.4 Issues in the existing parameter estimation method

The analysis of new experimental and synthetic data sets highlighted important issues in
the underlying software used for clonal data analysis that might be responsible for the
inaccurate parameter estimation. An already mentioned problem is the inability to estimate
the probabilities of big clone sizes without introducing modifications to the code (see Section
3.3.2, page 55). Furthermore, as also shown by the analysis of experimental clonal data, the
method fails to produce smooth parameter likelihood distributions and reasonable confidence
intervals.

The most important issue though was the observation of collision in estimated proba-
bilities of different parameter inputs. Table 3.2 illustrates an example case of discordant
synthetic input and estimated parameters.

Input r Input ρ Input λ Output r Output ρ Output λ Euclidean Distance
0.25 0.5 2 0.425 0.85 2 0.4

Table 3.2 Input and estimated parameter values for an example synthetic dataset. The Euclidean
distance between input and estimated values highlights the issues in the accuracy of parameter es-
timation. Higher distance indicates higher discrepancy. The Euclidean distance was calculated as:√
(ri − ro)2 +(ρo −ρi)2 +(λo −λi)2, where i,o correspond to input and output respectively.

The current method was used to calculate the probabilities for observing clone sizes
2-10 at 3 and 6 weeks for both input and output parameters (Figure 3.12). The outcome
of this experiment revealed that the two different parameter combinations gave the same
clone size probability distribution. Given the fact that this method is based on calculating
the probabilities of observing a given clone size at a given time point for a given ρ , λ and
r parameter combination and compare them with the experimental data to infer the most
likely parameter combination, it is highly problematic that same clone size probabilities
are evaluated for different parameter values. Collectively, all the issues discovered from
testing the existing computational method highlight the need for a more accurate parameter
inference approach.
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Fig. 3.12 Multiple acceptable solutions for the same dataset. The difference of clone size probability
distributions between input and estimated parameters as calculated by giving the r = 0.25, ρ = 0.5, λ = 2/week
synthetic dataset. Despite the fact that the estimated parameter values did not match the input ones the difference
in their probability values is almost zero, indicating same probability distributions for different parameters.

3.5 Exploring alternative approaches for clonal data quan-
tification

In seeking to define a more robust methodology for estimating clonal data parameters, I
tried several alternative approaches. The analytical solution is reliant on the computation
of confluent hypergeometric functions, which is a non-trivial task and is a research topic in
itself (Pearson et al., 2017). The existing MATLAB implementation for calculating these
equations is time consuming and prone to error in many parameter regimes (see Section
3.2.4, page 46). Considering this, I initially re-implemented the analytical solution in Python.
Estimating clone size probabilities by alternative functions might eliminate the probability
collision, the most serious issue that emerged from the validation of the existing parameter
inference method.

The new implementation of the analytical engine using Python libraries was applied to a
set of synthetic data. Strikingly, the inferred parameters appear to match the input ones, for a
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series of different synthetic datasets (Figure 3.13). Nevertheless, the method was not able to
produce appropriate parameter likelihood distributions, as the calculated likelihoods were
very precise with narrow confidence intervals.

Despite its success in estimating the correct parameters for the given set of synthetic
data, the analytical approach has still limitations. A known issue in the analytical solution
is the assumption of an exponential distribution of stem cell cycle times. This is restrictive,
particularly in light of short term data from histone labelling and live imaging experiments
(Rompolas et al., 2016), showing that cell cycle distribution times do not following exponen-
tial distributions (Piedrafita et al., 2020). With that in mind, a series of inference approaches
which have the flexibility of accounting for more realistic cell cycle times were explored. A
common alternative to analytical solutions are simulation based techniques. Considering
this direction, I performed Gillespie simulations to calculate the probability of observing a
clone size at a given time point. To perform an initial comparison, I considered exponentially
distributed cell cycle times. The generated clone size probabilities were then contrasted with
clonal data using a set of different methods.

• Maximum Likelihood estimation (Section 2.2.1, page 29): the frequency of each basal
clone size per time point, obtained by Gillespie SP simulations was compared with the
clonal data in order to calculate a log-likelihood value. As indicated in Section 3.3.2,
SP model’s characteristic scaling behaviour may lead to large variations in the clone
size distributions. This would imply that if certain clone sizes are not represented in
the stochastic simulations, this might introduce a bias in the log-likelihood calculations.
To deal with this issue, I decided on binning the clone sizes in ranges increasing in
powers of two.

• Cumulative distance function: the closeness between the SP simulations and the
experimental data was estimated by computing the sum of the Kolmogorov-Smirnov
(KS) test’s distance statistic.

• Sequential Monte Carlo ABC (SMC-ABC) (Section 2.2.2, page 30): In SMC-ABC
the initial parameter set is generated randomly and the quality of fit between model
simulations and experiments is measured according to a distance function. The new
parameter sets to be tested are derived from a perturbation of the previously checked
ones. By rejecting parameter values with calculated distance above a certain threshold,
the most likely parameter combination is estimated after certain rounds of tries.
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(a) (b)

(c) (d)

Fig. 3.13 Synthetic data analysis using the new analytical engine. The new analytical engine with a
maximum likelihood calculation is able to successfully infer r and ρ parameters when applied to synthetic data
with exponentially distributed cell cycle times. Heatmap of parameter likelihoods showing the most likely r
and ρ values obtained, assuming prior knowledge of division rate, λ . a) λ = 2.9/week, r = 0.06, ρ = 0.5, b)
λ = 2.9/week, r = 0.08, ρ = 0.66, c) λ = 2.9/week, r = 0.045, ρ = 0.375, d) λ = 2/week, r = 0.125, ρ = 0.75.
Results are very precise, with no smooth parameter likelihood distributions.

To explore the limitations of the different methods and find the most appropriate strategy
for parameterising clonal data, the analytical engine and the simulation based alternative
approaches were applied to the analysis of both previously published experimental (Doupé
et al., 2012) and synthetic datasets with exponential cell cycle distributions.

Synthetic and experimental data analysis by different methods produced similar outputs,
with all approaches broadly agreeing on the estimated parameter values (Figures 3.14, 3.15).
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In terms of computational efficiency, SMC-ABC and the analytical approach were the fastest
methods, with the SMC-ABC also being able to take advantage of multiple CPU cores. On
the contrary, simulation based approaches required more time to complete the calculations
which increased substantially with sample size.

One of the hallmarks of the SP model is that the average basal clone size grows linearly
with slope of this line being equal to r/ρ (see Section 1.5, page 8). Driven by this, I
performed a restricted search assuming a relationship of r/ρ calculated from the slope of
the average clone size in order to reduce the parameter search space significantly and allow
for increased sampling. Both simulation and analytical methods agreed on the estimated
parameter values (Figure 3.16). The analytical solution was able to infer the expected
parameter values producing narrow confidence intervals and a smooth likelihood distribution
(Figure 3.16a). On the contrary, maximum likelihood based simulations required a sample
size larger than 100,000 simulations per parameter set to produce an appropriate distribution,
increasing computational effort substantially (Figure 3.16b).

Collectively, all the above observations suggest the newly implemented analytical solution
and the SMC-ABC as more efficient methods for parameterising the SP model.
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(a) (b)

(c) (d)

Fig. 3.14 Analytical solution and simulation-based methods attempting to infer SP parameters when
applied to oesophageal clonal data from Doupé et al. (2012). Published parameters: r = 0.1, ρ =
0.65, λ = 1.9/week. Heatmap of parameter likelihoods showing the most likely r and ρ values with prior
knowledge of division rate, λ , as inferred from histone dilution experiments. a) the analytical engine b)
Gillespie simulations with MLE and 100,000 sample size, c) Gillespie simulations with cumulative KS distance
and 100,000 sample size, d) SMC-ABC running for 10 generations. Heatmap plots Kernel Density Estimate of
final population of parameter sets.



64 Quantitative analysis of clone growth in epithelial tissues

(a) (b)

(c) (d)

Fig. 3.15 Analytical solution and simulation-based methods attempting to infer SP parameters when
applied to synthetic dataset. The synthetic dataset was generated with parameters λ = 2.9/week, r = 0.06, ρ

= 0.5 and assuming exponentially distributed cell cycle. Heatmap of parameter likelihoods showing the most
likely r and ρ values with prior knowledge of division rate, λ , as inferred from a) the analytical engine b)
Gillespie simulations with MLE and 100,000 sample size, c) Gillespie simulations with cumulative KS distance
and 100,000 sample size, d) SMC-ABC running for 10 generations. Heatmap plots Kernel Density Estimate of
final population of parameter sets.
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(a) (b)

(c)

Fig. 3.16 Restricted search assuming a relationship of r/ρ obtained from the linear slope of the average
clone size over time. a) Analytical engine gives a smooth distribution of parameter likelihoods with r = (0.067,
0.0756) 95% CI, b) MLE based Gillespie simulations produce a noisier distribution even with increase sample
size (1,000,000) with r = (0.0816, 0.0948) 95% CI, c) Gillespie simulations with cumulative KS distance and
10,000 sample size.

3.5.1 Effects of cell-cycle and biological variation on parameter infer-
ence

As already stated, both the analytical engine and the simulation based approaches examined
so far assumed an exponential distributed cell cycle of stem cell population. However, this
assumption does not take into account the waiting time between consecutive cell divisions
observed in real tissues. This is also supported by short term data from histone labelling
and live imaging which suggest that cell cycle does not follow an exponential distribution.
Moreover, the observation of large sized clones in Gillespie simulations I performed, which
are not frequently observed in lineage tracing further indicates that real data follow alternative
cell cycle distributions. Furthermore, the original synthetic datasets do not take into account
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biological variation between mice (Sada et al., 2016, Piedrafita et al., 2020), and so do not
allow testing whether error estimates are accurate. To test these properties explicitly both
features were included in synthetic datasets and rerun. I initially generated synthetic data
with a more realistic underlying cell cycle distribution (Gamma distribution) (Piedrafita et al.,
2020):

P(tcc)∼ Gam(κ,θ), (3.2)

where κ and θ represent the shape and scale parameters of a Gamma distribution.
Application of the analytical method to Gamma distributed synthetic data revealed an

issue in inferring the expected parameter values. As shown in (Figure 3.17), although
the method seems to accurately infer the expected r and ρ values in the synthetic dataset
with exponentially distributed cell cycle, the estimated parameter values were shifted when
Gamma distributed cell cycle was considered. This highlights an important limitation of
the analytical solution, as it appears to analyze accurately only datasets with unrealistic cell
cycle distributions.

Fig. 3.17 Parameter inference outputs of the analytical solution on synthetic data following either an
exponential or Gamma distribution of average cell cycle times . Inference of r and ρ parameters in datasets
with Gamma distributed cell cycle times appears to be less accurate. Parameters of Gamma distribution: κ = 8,
θ = 0.3875 (top), κ = 8, θ = 0.2375 (bottom), from Piedrafita et al. (2020). Red line corresponds to r/ρ ratio
obtained from the linear slope of the average clone size over time.
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To test whether the inference process is also sensitive to biological variability, I generated
synthetic data with r, ρ and λ values drawn from a normal distribution in order to introduce
some noise, similar to the potential noise introduced in real datasets by biological variation.
Synthetic datasets where realistic cell cycle distribution times and biological variation were
modelled revealed that likelihoods calculated from the analytical engine were overly precise
with the narrow confidence intervals that appear to underestimate the uncertainty on the
maximum likelihood estimate (Figure 3.18a). Whilst the introduction of more complex cell
cycle times undermines the maximum likelihood parameters, the underestimation of errors by
maximum likelihood methods has been reported as a result of poor sampling (Jain and Wang,
2008, Sugasawa and Noma, 2019). Using a simulation based maximum likelihood approach
improves the parameter estimation but error estimation and computational efficiency issues
remain. An SMC-ABC approach was able to overcome this issue. This method offered an
efficient and more accurate input parameter inference, producing a smooth distribution with
more realistic confidence intervals (Figure 3.18b). Together, these findings demonstrate that
the SMC-ABC inference technique can be considered as the most appropriate method for
analyzing lineage tracing datasets.

(a) (b)

Fig. 3.18 SMC-ABC approach efficiently and appropriately parameterises the single progenitor model
from lineage tracing data. a) Synthetic datasets where realistic cell cycle distribution times and biological
variation are modelled show that likelihoods calculated from the analytical engine are overly precise with too
narrow confidence intervals and thus inaccurate. Input parameters and error estimates indicated by cross and
error bars (2XSD), whilst the heatmap plots likelihood distribution calculated using the analytical solution. b)
An SMC-ABC approach gives a smooth distribution and reasonable confidence intervals. Input parameters and
error estimates indicated by cross and error bars, whilst the heatmap plots Kernel Density Estimate of final
population of parameter sets.
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3.6 Re-analysis of oesophageal and epidermal datasets with
SMC-ABC

Having identified the best approach for analysing clonal datasets, I revisited the data from
oesophagus (Section 3.2.3, page 44) and epidermis (Section 3.2.4, page 46) and performed
parameter inference using SMC-ABC. The analysis was performed considering Gamma
distributed cell cycle times. As demonstrated in Figure 3.19 the method estimated the r

and ρ parameters for each dataset, with the predictions being in line with those initially
proposed by the analytical solution. However, ABC estimates are not overly precise and have
broader confidence intervals. The proposed parameter values are also in broad agreement
with previously published ones for the same tissues (Doupé et al., 2012, Murai et al., 2018).

(a) (b)

Fig. 3.19 Application of SMC-ABC on oesophageal and back epidermis lineage tracing data. SMC-ABC
parameter inference output for a) oesophageal data b) Epidermal data. SMC-ABC estimates parameters with
more realistic confidence intervals, in contrast to the narrow ones produced by the analytical solution. The
inferred r and ρ appear consistent with previously proposed values describing datasets of the same tissues
(Doupé et al., 2012, Murai et al., 2018).
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3.7 Discussion

To summarize, in order to investigate how mechanisms that ensure the proper function of
normal squamous epithelial tissues are broken during mutagenesis and early development
of cancer, one has to primarily focus on how these tissues are maintained. For this purpose,
it is important to retrieve quantitative information of the epithelial stem cells dynamics in
homeostasis. Analysis of stem cell population distributions at different time points from
lineage tracing experiments in oesophageal and epidermal tissues gave rise to a single
progenitor model of tissue maintenance. This mathematical model can be described by a set
of parameters, a division rate (λ ), a stratification rate (Γ) and the probability of symmetric
division (r).

An analytical approach combined with maximum likelihood calculations has been pro-
posed for estimating these parameters and fits given clonal data as input. Using this existing
solution, short and long term oesophageal and epidermal experimental data were tested.
Discrepancies in parameter estimation revealed serious concerns about this method and made
its validation on computationally generated data highly significant. Quantitative analysis of
the synthetic data allowed me to further examine the issues in the method, fix some of them
and discover the major problem of collision in estimated parameter probability distributions.
This would imply that we are not able to do better fitting to the distributions than looking at
their average properties. Thus, in order to estimate all three parameters, it is necessary to
calculate at least two of them from alternative sources.

Considering the above issues of the current computational approach in parameter estima-
tion I sought to find a more accurate and efficient way to quantify stem cell clone dynamics.
To this end a series of different strategies were explored on both experimental and synthetic
datasets. Re-implementation of the analytical solution in Python led to the elimination of
estimating same probabilities for different parameters. The new analytical engine was able
to infer parameters with narrow confidence intervals. Model parameterisation and accurate
representation of uncertainty however remained problematic, when realistic cell cycle distri-
butions and biological variation between animals were explicitly included. In particular the
parameters proposed were incorrect and the true values outside the confidence intervals.

Simulation maximum likelihood approaches had the advantage of taking account of
more realistic cell cycle distribution times but require intractable numbers of simulations
to estimate the most likely parameter combination accurately. A substantially faster and
computationally cheaper ABC approach was able to account of cell cycle times and identify
the input parameters more accurately with reasonable error estimates.
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Taken together, the major output from the above analysis was to identify the most ap-
propriate approach for analysing lineage tracing data on squamous epithelia. This method
will allow for accurate and efficient analysis of newly collected datasets. Most importantly,
reliable parameterisation of such systems would give access to valuable quantitative informa-
tion on how these tissues are maintained and enable investigating what causes homeostatic
disruption during mutagenesis and cancer.



Chapter 4

Spatial single progenitor model continues
to describe epithelial homeostasis

Abstract

Homeostasis in stratified squamous epithelia is dictated by the coordinated behaviour and
neutral competition of stem cells in the context of a tightly packed tissue. The SP model
successfully reproduces epithelial stem cell dynamics in the zero dimension. In this chapter,
I sought to confirm that such a model continues to match experimental data when spatial
competition is explicitly included. To address this question, I developed a spatial SP model
using Cellular Automata (CA).

I found that the spatial SP model successfully recapitulated the hallmarks of neutral
growth. However, the cell autonomous fate decision process supported by the SP model,
introduced local, transient crowding and extinction events, indicating the need for cell
communication feedbacks to correct the local imbalance.

Nevertheless, coupling division and stratification events as an attempt to introduce some
form of spatial regulation did not offer a substantial improvement to the simulated dynamics
of the system. On the contrary, in some cases, fate coupling failed to reproduce the key
homeostatic properties.

Together, these findings suggest that tissue organisation does not alter the neutral SP
model as the growth patterns of the spatial model accurately reproduced the experimental
observations across different available experimental datasets.
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4.1 Introduction

The study of cell fate determination and the balance between cell production and loss
underlying tissue homeostasis, provides means to understand both tissue maintenance and
carcinogenesis in stratified squamous epithelia. The single progenitor (SP) model has proven
particularly useful as it offers parameterisation and a quantitative description of epithelial
tissue maintenance.

However, such a model permits the study of stem cells as populations and completely
disregards the spatial characteristics of the tissue. Spatial competition plays an important role
in a wide variety of different scenarios, altering growth curves in ways that reflect both tissue
structure and experimental methods (Noble et al., 2019, Hall et al., 2019, Chkhaidze et al.,
2019). Tissue organisation restricts clone growth, potentially altering growth patterns and
undermining the validity of the model. In the single progenitor model specifically we might
expect that average clone size grows initially linearly, but becomes sublinear as clones grow
large and only can expand through competition with neighbouring clones at the periphery.
Thus, to investigate whether the inclusion of spatial constraints alters growth dynamics, the
SP model was extended to account for the spatial patterning of cells within the basal layer.

Several spatial modelling approaches have been used to investigate processes such as
healthy tissue growth and maintenance, as well as tumour growth and wound healing in
multi-cellular systems. In such cell-based or individual-based models, cells are represented as
discrete entities with assigned properties, which respond to local interaction rules. Depending
on the information required to be captured, different model classes can be used, with different
levels of complexity. Two main categories of cell-based model types exist: on and off lattice,
based on whether cells are restricted to a fixed grid or they move freely in response to applied
forces (for a more detailed description, see Section 1.9.2).

Two well known classes of on-lattice cell-based models are cellular automata (CA) and
the cellular Potts (CP) model, where a biological cell may occupy a single or several lattice
sites respectively. In CA, the system evolves according to a set of local rules, which specify
how each site is updated (e.g. division, migration, death). The low complexity of this model
class, allows for performing multiple simulations of large cell population sizes efficiently. In
contrast to CA, the CP modelling approach provides a more realistic representation of cell
shapes and is capable of studying mechanical properties of the system, such as cell adhesion
and membrane tension (for a more detailed description, see Section 1.9.2).

A more detailed exploration of mechanical processes is achieved with the off-lattice or
lattice-free models. This model class, where cells are usually represented as deformable
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spheres which change shape following interactions, or as polygons whose vertices move
according to a balance of forces, achieves a higher resolution in cell shape and complex cell
packings (for a more detailed description, see Section 1.9.2). Lattice-free simulations offer
a natural approach for considering crowding without further modification. However, this
approach relies on additional parameters which cannot be retrieved by the available lineage
tracing data. Therefore, an on-lattice model would be a more appropriate modelling approach
for simulating the current system.

The available lineage tracing data provide information regarding clone counts and cell
positions within the tissue without however including physical properties in detail. Consid-
ering this, a simpler model, which keeps track of each cell’s decisions without explicitly
accounting for mechanical interactions is more appropriate for describing the current exper-
imental information. Therefore, a stochastic CA was used to implement the SP model in
the two-dimensional space and explore the collective behaviour of cells in the tissue. The
appropriateness of CA in modelling lineage tracing experiments is also supported by a recent
study (Roy et al., 2014).

4.2 Spatial Single Progenitor model

Experimental images of mouse epidermis and oesophageal epithelium have shown that cells
are organized in a hexagonal-like arrangement (Figure 4.1), leading me to select a hexagonal
lattice as a reasonable approximation of an adult mouse homeostatic epithelial basal layer.
A two-dimensional, hexagonal lattice was used to model the basal layer of the epithelium
(Figure 4.2a). Each site of the grid may be occupied either by one of the two cell types
described in the SP model (Section 1.5, page 8) proliferating cells (A) and post-mitotic cells
(B), or it may remain vacant as a result of a stratification event. Also, a lattice site may
be occupied by two cells, indicating a crowding region. A division event can lead to three
potential outcomes: two proliferating cells, two differentiating cells or one daughter of each
cell type.

The neighbourhood in the SP CA model is defined by the six adjacent places (Figure 4.2b).
Each newly born cell can be placed on any vacant space in its parent’s six-cell neighbourhood.
However, lineage tracing experiments on the murine oesophageal epithelium reveal that
cell divisions are aligned within the longitudinal axis of the organ (Doupé, 2009). This
preferential direction of divisions might be possibly explained by the continuous longitudinal
tension exerted on the oesophageal epithelium, by means of its attachments to the oral cavity
and the stomach (Doupé, 2009). To explicitly include the above mentioned reported feature
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in the model, a division directionality bias was introduced for simulating the oesophageal
epithelium dynamics. The bias was introduced by defining as neighbourhood the four
adjacent places instead of six, thus forcing division events to take place along one axis of the
grid (Figure 4.2c).

Fig. 4.1 Confocal images of mouse OE basal epithelium showing a hexagonal-like cell organization. Left:
Grey is Wheat Germ Agglutinin (WGA) membrane staining. Right: WGA (grey) showing cell’s membranes
and DAPI (blue) showing cells’ nuclei. Scale bars, 9 µm. Image provided by Phil Jones lab, in the Sanger
Institute.
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Stem cell (A) Differentiating cell (B)

Fig. 4.2 Schematic representation of the spatial SP model. a) illustration of the two-dimensional hexagonal
lattice representing the epithelial basal layer. Proliferating cells (shown in yellow) are able to divide, whilst
differentiating cells (shown in blue) exit the basal layer and are removed from the simulation, b,c) neighbourhood
types: stem cells can divide and the new daughters can be placed on any of the six adjacent lattice sites (b) or
on any of the four adjacent sites to simulate the preferential direction of divisions along the longitudinal axis in
the murine oesophageal epithelium (c).

The spatial single progenitor model was initially developed without accounting for any
kind of spatial feedbacks that could influence cell fate decisions, similar to the non-spatial
model. Therefore, division and stratification events were considered as two independent
processes determined solely by r, λ and Γ parameters. This cell-autonomous approach could
lead to cases where a cell division event occurs at a region with no available neighbouring
vacant space. In such case, the two daughter cells were placed on the same grid space,
indicating an increased cell density area. Analogously, cases where an empty space generated
by a recently stratified B cell is not rapidly replaced by a nearby newly born cell might be
observed, representing a low cell density area. Considering the above, each lattice site could
have one of the following seven potential states: A, B, DAA, DAB, DBA, DBB and “empty”
(∅), where DAA, DAB, DBA, DBB correspond to double occupancies. Thus, the SP model
(Eq 1.1, page 9) was extended to explicitly include space as follows:
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A ∅ λ−→



AA r

AB 1
2 − r

BA 1
2 − r

BB r

A X λ−→



DAA r

DAB
1
2 − r

DBA
1
2 − r

DBB r

B Γ−→∅,

(4.1)

where A ∅ denotes a type A cell neighbouring a vacant lattice site and AX denotes a type A
cell neighbouring either a type A or type B cell, thus indicating that there is no neighbouring
empty space. DAA, DAB, DBA, DBB correspond to double occupancies. The choice to include
double cell occupancies in the model was based on in vitro culture observations (Phil Jones,
personal communication). Greater than double occupancies were not observed in in vitro

cultures and were not included in the model.
Figure 4.3 represents a schematic description of the spatial rules of the SP CA model.
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Fig. 4.3 Rules of the spatial SP model. Illustration of the spatial SP model. Proliferating cells in yellow and
differentiating cells in blue. Proliferating cells undergo a division type which is decided by the probability
of symmetric divisions,r. A proliferating cell which is about to divide checks its immediate neighbourhood
for available space. If a vacant site exists (top), one daughter cell occupies the mother cell’s space and the
second the neighbouring empty space. If there is no empty space in the immediate neighbour (bottom), the two
daughters occupy the mother cell’s space, thus creating a double cell occupancy. Double state cells are released
once a neighbouring lattice site becomes available.

The CA model was developed in NetLogo, a widely used agent-based modelling envi-
ronment (Wilensky, 1999). To investigate how spatial constraints affect epithelial cell clone
stochastic evolution, I used a Markovian stochastic simulation algorithm, where the basal
layer was simulated as an asynchronous CA. The algorithm included the following steps:

1. Start by defining a grid of NxN sites with A and B cells randomly seeded. The fraction
of A cells is calculated from ρ parameter.
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2. For every cell on each lattice site, draw a random number from an exponential distribu-
tion with mean 1/λ or 1/Γ to assign time of next event (division or stratification) for
A and B cells respectively.

3. Select cell with the smallest next event time assigned. Current time is updated to the
smallest next event time.

4. If an A cell is selected, use a random number from a uniform distribution U ∈ (0,1)
to choose the division type to occur by comparing U to division probabilities. Assign
the division type as a next event for the selected cell. If a B cell is selected, assign
stratification as a next event for the selected cell.

5. If the next event is division, all neighbouring places are checked for empty space. In
the case of an existing neighbouring space, one new born cell will replace the mother
cell and the other will occupy the empty neighbouring space. If there is no empty
neighbouring space available then both will remain at the mother cell’s space (creating
a “double state” cell), until a neighbouring space is released. This would cause delays
in division and stratification events as "double state" cells are trapped and thus not able
to divide or stratify at their assigned times. If stratification is the next event, B cell
stratifies, leaving an empty space, which allows potential neighbouring “double state”
daughters to be released.

6. Repeat steps 3-6 until there are no A or B cells left or time threshold is reached.

The following flowchart describes the model steps in detail:
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Fig. 4.4 Spatial Single Progenitor model. Detailed flowchart describing the steps of the spatial SP model.
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4.3 SP spatial simulations of WT oesophageal epithelium

Computational simulations of the CA model were performed to explore the dynamics of
the spatial system. The mouse oesophageal epithelium is considered a well-studied system,
mainly due to its simple, homogeneous architecture and rapid regeneration. We can assume
that the published r, λ and ρ parameters inferred from quantitative analysis of murine
oesophageal lineage tracing data are reliable. For this reason, the spatial simulations were
set up to model the dynamics of the epithelium, using the input parameters provided by the
literature. Basal epithelial cells were simulated on a lattice originally containing 10,000 cells
(L = 100 X 100), corresponding to roughly 1% of adult mouse oesophagus, where periodic
boundary conditions were applied. Each simulation was repeated 100 times.

To assess how many simulation repeats are required in order to achieve output conver-
gence, I performed several simulation repetition sets (N=10, 30, 50, 100, 200) and tested
how reliably each of them was able to predict a known property of the system. As a known
feature, I used the slope of the average clone size over time, which should equal rλ/ρ (as
described formally in Section 1.5). As shown in Figure 4.5a, all tested repeat sets consistently
predicted a slope value equal or similar to the expected one.

To adopt a more systematic approach in identifying the required number of simulation
repeats, I performed a Jackknife re-sampling analysis (Efron and Stein, 1981), calculating
the mean clone size statistical value for an increasing number of repetitions. Jackknife is
a technique that performs re-sampling (data reuse for generating new, hypothetical sub-
samples) to evaluate the bias and variance of a parameter estimate as well as calculate the
standard error of a statistic. The new samples are generated by systematically excluding
each observation from the original data and a parameter estimate is then calculated for each
sub-sample. As expected, as the number of repetitions rises, the standard error of mean
clone size decreases. However, this decrease is sharper from 10 to 100 repetitions and it
slows down when moving towards 200 repetitions (Figure 4.5b). In addition, more than
100 repetitions result in an increased demand in computational resources with a negligible
improvement in standard error. Considering all the above, 100 repetitions per simulation
were selected.

Given that the mouse lineage tracing experimental data available typically provide
information for up to 18 months, reflecting mouse lifespan, the duration of the simulations
was set to 80 weeks.
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(a) (b)

Fig. 4.5 Convergence analysis (a) and Jackknife re-sampling (b) for mean clone size parameter. The
average clone size was calculated from spatial SP simulations, repeated 10, 30, 50, 100 and 200 times on a
100x100 lattice with parameters r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012). a) All tested
repeat sets consistently predicted a slope value (black points) equal or similar to the expected one (red dotted
line). b) Standard error of mean clone size for the different simulation repetition sets as estimated by Jackknife
re-sampling. An initial sharp drop is observed which slows down as the number of repetitions increases.

4.3.1 Single Progenitor hallmarks on cell populations are successfully
recapitulated

The simulation outputs revealed that taking into consideration the spatial constraints imposed
by the lattice do not cause the model to deviate from the experimental data taken from
mouse oesophagus. The spatial model is able to reproduce the characteristic features of
the stochastic birth-death process (the hallmarks of a single population of stem cells), as
described in Section 1.5. Homeostasis (a constant number of proliferating cells) is maintained
by a balance between cell production and loss (Figure 4.6a). Over time, due to stochastic
divisions resulting in a pair of differentiated daughter cells, clones are lost following a simple
relationship determined by r and λ . which is counterbalanced by a continuous increase in
their size. To maintain a constant population, the average size of the persisting clones rises
linearly, with slope τ = rλ/ρ . The simulated tissue demonstrates both of these properties
(Figure 4.6b,c) with growth dictated as expected by input model parameters. Finally, whilst
the clone size distribution becomes broader over time, the shape remains constant once scaled
by the average clone size (Figure 4.6d,e). Taken together, these findings demonstrate that the
average behaviour and the clone size distributions of the epithelial basal cells are consistent
with the stochastic SP model of epithelial homeostasis, implemented on the two-dimensional
space.
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(a) (b)

(c) (d)

(e)

Fig. 4.6 Quantitative analysis of spatial SP simulations for the oesophageal dataset. Parameters used:
r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012). Spatial restrictions do not alter the
characteristic features on cell population dynamics, described in Section 1.5. a) stem cell population remains
largely constant, b) the number of clones decreases over time following a simple relationship determined by r
and λ , c) the average clone size increases over time, with slope τ = rλ/ρ , d) clone size distribution scales over
time, e) the clone size distribution adopts a broader shape over time. Data correspond to mean values across
100 simulations. Shaded areas correspond to SD.
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4.3.2 Spatial impact on tissue density

Murine oesophageal tissue presents a remarkably simple architecture, with no complex
structural units and a nearly uniform cell density (Doupé et al., 2012, Alcolea et al., 2014).
To investigate whether the spatial model is able to reproduce the experimentally observed
uniform basal layer density, I examined the spatial distribution of cells in the grid. The spatial
component introduces some interesting emergent properties. Several random crowding and
extinction events are noticed, demonstrated by the formation of double cell occupancies and
empty areas respectively (Figure 4.7). These patterns emerge as small-scale, local events on
different parts of the lattice as time progresses.

t=0 (weeks) t=10 (weeks) t=30 (weeks)

Stem cell (A)

Differentiating cell (B)

Double Occupancy

Empty space

t=50 (weeks) t=70 (weeks)

Fig. 4.7 Spatial SP simulation time lapse. Typical simulation time lapse of the spatial single progenitor
model, simulating cell growth dynamics in mouse oesophageal basal layer at different time points (0, 10, 30, 50
and 70 weeks). Cells are placed on a 2D 100x100 hexagonal lattice. The inclusion of space introduces cell
density heterogeneity. Areas of empty patches (shown in white) and double state cells (shown in green) are
formed, as local transient phenomena. Parameters used: r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al.
(2012).
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(a)

(b) (c)

Fig. 4.8 Effects of cell density fluctuations on spatial SP simulations of mouse oesophagus. Parameters
used: r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012). a) Local cell density distribution across
equally sized lattice segments adopts a broader shape over time, indicating an increase in cell density hetero-
geneity within the simulated tissue. Grid was split to 100 segments of 10x10 size, b) the emergence of high
density regions leads to a slight decrease in division and stratification events over time, c) tissue overall basal
cell density remains largely constant over time. Data correspond to mean values across 100 simulations. Shaded
areas correspond to SD.
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As a consequence, cell density fluctuations occur, rendering local cell density distribution
broader at later time points (Figure 4.8a), generating either jammed regions of trapped cells
which are not able to proliferate, or gaps. These local density fluctuations have an effect on
proliferation and stratification rates which follow a slightly decreasing trend (Figure 4.8b).
However, the spatial simulations are able to produce an overall normal adult oesophageal
basal layer, as demonstrated by the mostly constant basal cell density (Figure 4.8c). Taken
together, the local, transient phenomena in cell density variations, not previously quantified
in real tissues, indicate that tissue structure might limit cell growth.

4.3.3 Quantitative comparison to experimental images

In seeking to address the question whether the previously indicated model density fluctuations
are realistic, I searched for potential cell density variations in the existing in vivo lineage
tracing images by comparing their cell density distribution to the simulated ones (Figure 4.8a).
A lower variability in the real tissue would result in a less broad distribution. For this purpose,
I analysed confocal microscopy images of murine oesophagus wholemounts, provided by
Phil Jones in Sanger Institute. The tissue samples were retrieved from a one-year old mouse.

Fig. 4.9 Confocal image of an one-year old mouse oesophageal basal layer. Sample processing for whole-
mount preparation may lead to increased heterogeneity in the tissue’s cell density, which is evident by the
formation of crests and valleys. For performing cell density comparison between simulations and tissue images,
appropriate regions of confocal images were included. Regions in red squares represent crests and valleys
formations and are examples of excluded areas. The region in the green square is an example of an area included
in the comparison analysis.
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Fig. 4.10 Schematic illustration of oesophagus processing for wholemount preparation. Oesophagus is
removed from the animal and cut longitudinally. The epithelium is then peeled away from underlying tissue,
opened and stretched for processing.

Despite the fact that the tissue cell density is mostly uniform, its structure may contain
formations such as crests and valleys as a result of sample processing for wholemount
preparation (Figure 4.10). Due to these morphological properties, the spatial distribution
of basal stem cells varies across images (Figure 4.9). This structural heterogeneity is not
related to the density variability observed in the computational simulations. In order to avoid
misleading conclusions, such regions were not taken into consideration in the comparison of
cell density between in vivo experiments and computational simulations.

The analysis consisted of three main parts:

1. Segment experimental microscopy images in smaller compartments and exclude prob-
lematic compartments (as described above).

A set of confocal microscopy images (141) of murine oesophageal basal layer were
obtained. Each image was segmented to 64 equally sized squares, resulting in 9024
compartments in total. From this set, 400 regions were manually annotated and split in
two groups: “problematic” (n = 200) and “non-problematic” (n = 200). Each group
was further split into training and test sets, with a 70:30 ratio respectively, and used
as input in a machine learning algorithm. The algorithm was implemented in Python,
using ImageAI, a python library with self-contained Deep Learning and Computer
Vision capabilities (Moses and Olafenwa, 18 ). The resulting trained model for image
filtering which achieved 84.4% accuracy, was then used to classify the full set of
images in the two categories (“problematic”, “non-problematic”). Out of the 9024
regions from the initially segmented images, 1076 were predicted as “non-problematic”
with P > 70% and included in the analysis.

2. Computationally count cell numbers in each compartment.
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The number of cells per image was counted using Mahotas python library for im-
age processing. This library offers a set of image manipulation functions which have
the ability to detect sufficiently individual cells even when they form small aggregates
(Figure 4.11). When comparing the automated cell counts against a subset of images
with manually counted cell numbers, the algorithm achieved an 8% error.

Fig. 4.11 Computational cell counting in segmented confocal microscopy images of one-year old mouse
oesophagus. Left: example of an area classified as “non-problematic”, which was used as input for automatic
cell counting. Right: image processing and cell labelling using Mahotas Python library.

3. Calculate cell density distribution across compartments and compare to computational
simulations.

The cell density distribution of the microscopy images and computational simula-
tions were analysed to assess differences in density variance.

As shown in Figure 4.12 the cell density distribution in experimental microscopy
images appears less broad, indicating less dispersion in the real tissue. Using a
two sample KS test, the two density distributions were shown to be significantly
different (∗ ∗ ∗p < 0.001), which is further supported by a substantial difference in
the coefficient of variation (CV ) statistical values (CVm = 0.11, CVs = 0.25, where m

denotes microscopy images and s simulations).
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Fig. 4.12 Cell density distribution comparison between experiments and spatial SP simulations. Cell
density distribution in confocal microscopy images of murine oesophagus wholemounts and in spatial SP model
simulations (t = 52 weeks). To measure local cell density, the lattice was segregated in 100 segments of 10x10
size. Cell counts are normalized for direct comparison. The cell density distribution in microscopy images
appears less broad, implying less heterogeneity in the real tissue.

Therefore, the heterogeneity in the spatial distribution of cells, produced by the spatial im-
plementation of the SP model is not observed in the tissue’s microscopy images. This would
indicate that there might be some kind of spatial regulation mechanism which contributes to
the maintenance of a uniform cell density observed experimentally.

4.4 Single Progenitor model variations

4.4.1 Linking division to stratification

The SP model spatial simulations along with cell density analysis of oesophageal microscopy
images revealed that a stochastic model of epithelial homeostasis introduces some degree
of local cell density fluctuations in the two-dimensional space. Previous studies focused on
epithelial tissues provided some evidence of cell behaviour coordination by suggesting that
the increased local density introduced by cell division events is compensated by the extrusion
of nearby cells (Eisenhoffer et al., 2012, Marinari et al., 2012, Miroshnikova et al., 2018). In
light of this, the SP model was modified to consider spatial influences on stem cell stochastic
behaviour. The alternative model assumes that division and stratification events are no longer
two independent processes, but they are directly coupled. More specifically, the stochastic
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division of a stem cell triggers the stratification of a neighbouring post mitotic cell. The
division driven model was implemented as follows:

1. Start by defining a grid of NxN sites with A and B cells randomly seeded. The fraction
of A cells is calculated from ρ parameter.

2. Draw a random number exponentially distributed with mean 1/λ to assign time of
next event (division) for each A cell.

3. Select A cell with the smallest next event time assigned. Current time is updated to the
smallest next event time.

4. Use a random number from a uniform distribution U ∈ (0,1) to choose the division
type to occur by comparing U to division probabilities. Assign the division type as a
next event for the selected cell.

5. All neighbouring places are checked for a B neighbour. In the case of an existing B
neighbouring space, B cell stratifies, one new daughter cell will replace the mother
cell and the other will occupy the recently stratified B neighbouring space. If there is
no B cell in the neighbourhood, both daughter cells will remain at the mother cell’s
space (creating a “double state” cell), until a neighbouring B cell stratifies. If a “double
state” cell exists in the neighbourhood of a newly produced B cell, the B cell stratifies,
allowing the “double state” daughters to split.

6. Repeat steps 3-6 until there are no A cells left or time threshold is reached.

The following flowchart describes the model steps in more detail:



90 Spatial single progenitor model continues to describe epithelial homeostasis

Fig. 4.13 Division driven model model. Detailed flowchart describing the steps of the division driven model.
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4.4.2 Division driven spatial simulations of WT oesophageal epithe-
lium

In order to investigate how the division driven hypothesis changes the behaviour of the
system, simulations (n = 100) were set up and performed in the exact same way as described
in Section 4.3, page 80. A visual representation of one simulation at different time points (0,
10, 30, 50 and 70 weeks) is illustrated in Figure 4.14.

t=0 (weeks) t=10 (weeks) t=30 (weeks)

Stem cell (A)
Differentiating cell (B)
Double Occupancy

t=50 (weeks) t=70 (weeks)

Fig. 4.14 Division driven simulation time lapse. Typical simulation time lapse of the division driven spatial
model, simulating cell growth dynamics in mouse oesophageal basal layer at different time points (0, 10, 30, 50
and 70 weeks). Cells are placed on a 2D 100x100 hexagonal lattice. Areas of double occupancies are formed.
No empty spaces are observed as a result of the linking between division and stratification. Parameters used:
r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012).

Looking at how the system progresses over time, one can see that, unlike the initial SP
spatial implementation, no empty patches are formed, as expected from the linking between
division and stratification events (Figures 4.14, 4.15a). Double state cells are still observed,
although to a lesser extent (Figures 4.14, 4.15b), in cases when a stem cell divides and
there is no adjacent differentiating cell to compensate for this division event. The new
SP variant model introduces a tendency of stem and differentiating cells to cluster. This
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compartmentalization is evident by the formation of islands of differentiating cells, which
progressively become larger (Figure 4.14). Further analysis of the division driven model
simulations revealed that an overall homogeneous epithelial basal layer is produced, with the
total cell density being nearly constant (Figure 4.15c). Comparison of cell density distribution
with lineage tracing microscopy images suggests a significant difference between the two
distributions (∗ ∗ ∗p < 0.001 by two sample KS test), although the division driven model
adopts a much narrower distribution compared to the SP model (Figure 4.15d).

(a) (b)

(c) (d)

Fig. 4.15 Impacts of division driven spatial model on cell density in mouse oesophagus simulations. a)
percentage of empty areas in SP and division driven models, b) percentage of double occupancies in SP and
division driven models, c) basal cell density over time. Data correspond to mean values across 100 simulations,
d) cell density distributions in confocal microscopy images of murine oesophagus wholemounts, in division
driven and SP simulations (t = 52 weeks). Grid was split to 100 segments of 10x10 size. Cell counts were
normalized for direct comparison. a,b,c: Shaded areas correspond to SD.
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(a) (b)

(c) (d)

Fig. 4.16 Quantitative analysis of spatial division driven model simulations for the oesophageal dataset.
Parameters: r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012). a) stem cell population remains
largely constant, b) the number of clones decreases over time, following 1

1+λ rt , c) the average clone size
increases over time, with slope τ ≃ rλ/ρ , d) clone size distribution exhibits the characteristic scaling over time.
Data correspond to mean values across 100 simulations. Shaded areas correspond to SD.

As demonstrated in Figure 4.16, analysis of cell populations and clone size distributions
confirms that the division driven model is also able to recapitulate the signatures of population
asymmetry and neutral competition. Similar to the initial model, the balance between cell
production and loss maintains a largely constant number of proliferating cells (Figure 4.16a).
Furthermore, cell clones stochastically expand or shrink, leading to a drop in clonal population
and an increase in the average size of the surviving clones (Figures 4.16b,c) Moreover, the
clone size distribution adopts a broader shape over time and exhibits the characteristic scaling
behaviour (Figure 4.16d).
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Taken together, the fate coupling hypothesis, where division drives local stratification
does not modify the SP hallmarks on cell clone population behaviour. More importantly
though, the division driven approach does not seem to offer a substantial improvement to the
expected dynamics.

4.4.3 Linking stratification to division

In the light of a recent live imaging work on mouse epidermis (Mesa et al., 2018), where
it has been suggested that stratification triggers compensatory local cell division, one more
alternative version of the single progenitor model of epithelial homeostasis was explored.
According to this model hypothesis, division is directly coupled to stratification. That is,
division events occur upon a stochastic exit from the basal layer of a nearby differentiating
cell. The stratification driven model was implemented as follows:

1. Start by defining a grid of NxN sites with A and B cells randomly seeded. The fraction
of A cells is calculated from ρ parameter.

2. Draw an exponentially distributed random number with mean 1/Γ to assign time of
next event (stratification) for each B cell.

3. Select B cell with the smallest next time assigned. Current time is updated to the
smallest next event time.

4. All neighbouring places are checked for A neighbours. In the case of an existing A
neighbour use a random number from a uniform distribution U ∈ (0,1) to choose the
division type to occur by comparing U to division probabilities. One new daughter
cell will replace the mother cell and the other will occupy the recently stratified B
neighbouring space. If there are no A neighbouring cells, the B cell stratifies leaving
an empty space.

5. Repeat steps 3-4 until there are no B cells left or time threshold is reached.

The following flowchart describes the model steps in more detail:



4.4 Single Progenitor model variations 95

Fig. 4.17 Stratification driven model. Detailed flowchart describing the steps of the stratification driven
model.
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4.4.4 Stratification driven spatial simulations of WT oesophageal ep-
ithelium

The spatial simulations (n = 100) of the stratification driven variant were performed in
an equivalent way as described in the previous implementations. That is to say, the grid
configuration, the duration and the parameter choice were set up to match the ones mentioned
in Section 4.3, page 80. A visual representation of the evolution of the simulated tissue at
different time points (0, 10, 30, 50 and 70 weeks) is illustrated in Figure 4.18:

t=0 (weeks) t=10 (weeks) t=30 (weeks)

Stem cell (A)

Differentiating cell (B)

Empty space

t=50 (weeks) t=70 (weeks)

Fig. 4.18 Stratification driven simulation time lapse. Typical simulation time lapse of the stratification
driven spatial model, simulating cell growth dynamics in mouse oesophageal basal layer at different time points
(0, 10, 30, 50 and 70 weeks). Cells are placed on a 2D 100x100 hexagonal lattice. Gaps are formed which
progressively increase in size. The population of differentiating cells drops substantially. Parameters used:
r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012).

The simulated spatiotemporal dynamics of the system revealed an insufficiently populated
epithelial basal layer. Unlike the previously described model variants (stochastic SP model
and division driven model), no islands of double cells are visible when stratification drives
division (Figure 4.19a). However, this implementation introduces a non-negligible proportion
of vacant sites (Figure 4.19b) within the grid. The increasing incidence of empty regions
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leads to a drop in the overall tissue cell density (Figure 4.19c). A quantitative comparison of
cell density distribution between simulations and experimental images, as also previously per-
formed on the SP and division driven models, resulted in the same conclusion (Figure 4.19d,
∗∗∗p < 0.001 by two sample KS test).

(a) (b)

(c) (d)

Fig. 4.19 Impacts of stratification driven spatial model on cell density. a) percentage of double occupancies
in SP and stratification driven models, b) percentage of empty areas in SP and stratification driven models, c)
overall basal cell density drops, d) cell density distribution in confocal microscopy images of murine oesophagus
wholemounts, in stratification driven model and SP model (t = 52 weeks). Grid was split to 100 segments of
10x10 size. Cell counts were normalized for direct comparison. Data correspond to mean values across 100
simulations. Shaded areas correspond to SD.

In addition to the above, analysis of clonal dynamics revealed a series of issues this
model variant has in replicating the homeostatic behaviour. The substantial decline in the
number of differentiating cells led to an imbalance between cell production and loss, which
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is further demonstrated by the increase in progenitor cells’ proportion (Figure 4.20a). Clones
are lost over time, but not following the expected relationship with r and λ (Figure 4.20b).
Furthermore, in contrast to the expected linear growth of average clone size, a sublinear trend
is observed and the increasingly broad shape in clone size distributions is not noticeable at
later time points. (Figures 4.20c,d).

(a) (b)

(c) (d)

Fig. 4.20 Quantitative analysis of spatial stratification driven model simulations for the oesophageal
dataset. Parameters: r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012). a) proportion of
progenitor cells increases, b) the number of clones decreases over time, not following the expected relationship
with r and λ , c) the average clone size increases sublinearly over time, d) the increasingly broad shape in clone
size distributions is not noticeable at later time points. Data correspond to mean values across 100 simulations.
Shaded areas correspond to SD.
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Taken together, using the parameter values that describe the behaviour of the oesophageal
progenitor cells, the stratification driven spatial model generates an underpopulated basal
layer and fails to reproduce the hallmarks of the SP model of epithelial maintenance. The
underlying cause of this problematic behaviour stems from the increasing drop in the popula-
tion of differentiating cells. As stratification events are indispensable for the time evolution
of the system, the lack of differentiating cells renders the simulations starved with patches of
gaps and thus unable to continue.

Having identified the cause of the stratification model’s pathological behaviour, I sought
to assess whether a modified version of it, would be more successful in reproducing the
expected homeostatic dynamics. To this end, I implemented a speculative "empty-driven"
approach. In the modified version, divisions were still triggered by stratification events with
the additional assumption that the placement of a newly generated proliferating cell next
to a vacant lattice site would trigger a division of that cell. This approach could reduce
the large number of empty sites and assist in supplying differentiating cells to the system.
However, it would also indicate that potential continuing placements of newly born cells next
to empty sites would cause a chain of consecutive division and stratification events, which is
not biologically realistic.

The updated stratification model coupled with the empty driven assumption appeared to
fix the pathological behaviour previously introduced by the initial model. As demonstrated
in Figure 4.21, the emergence of empty sites is reduced substantially and a homeostatic
overall basal cell density is produced. Additionally, quantitative analysis of simulated clonal
populations revealed that the SP hallmarks are successfully recapitulated. The proportion of
proliferating cells remains constant (Figure 4.22a). Clone survival drops and average clone
size increases linearly following the model (Figure 4.22b,c). Moreover, the characteristic
scaling behaviour in clone sizes is successfully reproduced (Figure 4.22d). Notably, the
possibility of multiple events taking place at the same time leads to an increased number of
divisions and stratifications (Figure 4.22e). Furthermore, the replacement of multiple vacant
lattice sites as a result of consecutive division events generates a much narrower cell density
distribution than that observed experimentally (Figure 4.22f).

Together, these findings demonstrate that the stratification driven model is able to recapit-
ulate the homeostatic behaviour, when an additional empty driven division rule is accounted.
Nevertheless, this modification may trigger multiple consecutive divisions in certain cases,
which is a biologically unrealistic behaviour. The failure of the implementation of the pure
stratification hypothesis raises the question whether the stratification driven approach would
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exhibit a more realistic behaviour on alternative parameter sets, or conversely whether the
other models would fail under different parameters.

t=0 (weeks) t=10 (weeks) t=30 (weeks)

Stem cell (A)

Differentiating cell (B)

Empty space

t=50 (weeks) t=70 (weeks)

Fig. 4.21 Empty driven simulation time lapse. Typical simulation time lapse of the empty driven spatial
model, simulating cell growth dynamics in mouse oesophageal basal layer at different time points (0, 10, 30,
50 and 70 weeks). Cells are placed on a 2D 100x100 hexagonal lattice. The emergence of gaps is reduced
substantially and an overall uniform basal cell density is produced. Parameters used: r = 0.1, ρ = 0.65, λ =
1.9/week, from Doupé et al. (2012).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.22 Quantitative analysis of empty driven model simulations on the oesophageal dataset. Param-
eters: (r = 0.1, ρ = 0.65, λ = 1.9/week, from Doupé et al. (2012)). a) The proportion of stem cells
remains largely constant, b) the number of clones decreases over time, following 1

1+λ rt , c) the average clone
size increases over time, with slope τ ≃ rλ/ρ , d) clone size distribution exhibits the characteristic scaling over
time, e) the number of division and stratification events in empty driven (ED) model is higher compared to
SP model, f) cell density distribution remains highly invariable. Data correspond to mean values across 100
simulations. Shaded areas correspond to SD.
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4.5 Global appropriateness of different models

So far, I have examined the general properties and implications of the three spatial SP variants
(independent, division driven, stratification driven) on murine oesophageal tissue dynamics.
I found that the expected homeostatic cell population dynamics remain unaltered, excluding
the stratification driven model which appears to be the least appropriate for describing the
dynamics of this particular tissue. In this section, I will extend the simulations to alternative
parameter combinations of oesophagus and other tissue types and will investigate how
successfully each model variation reproduces the expected clonal behaviour. For this purpose,
I performed computational simulations of each model variant, using as input experimentally
inferred parameter values (λ ,ρ,r) describing the dynamics of four different murine epithelial
tissues (oesophagus, back epidermis, ear epidermis and plantar epidermis) (Table 4.1).

Tissue Reference λ (/week) r ρ

Oesophagus (OE) Doupé et al. (2012) 1.9 0.1 0.65
Oesophagus (OE) Piedrafita et al. (2020) 2.9 0.06 0.56
Back Epidermis (Back) Murai et al. (2018) 1.16 0.06 0.77
Back Epidermis (Back) Piedrafita et al. (2020) 1.2 0.04 0.61
Ear Epidermis (Ear) Doupé et al. (2010) 1.2 0.11 0.28
Ear Epidermis (Ear) Piedrafita et al. (2020) 1.5 0.04 0.54
Plantar Epidermis (Pl) Lim et al. (2013) 2.2 0.2 0.8
Plantar Epidermis (Pl) Piedrafita et al. (2020) 2.0 0.14 0.53
Synthetic dataset (S) Synthetic dataset (S) 1.5 0.5 0.4
Synthetic dataset (S) Synthetic dataset (S) 1.5 0.1 0.45
Synthetic dataset (S) Synthetic dataset (S) 1 0.06 0.35
Synthetic dataset (S) Synthetic dataset (S) 1.5 0.15 0.7

Table 4.1 SP model parameter sets. Parameter values inferred for progenitor cell behavior in different murine
epithelial regions, as derived from quantitative lineage tracing, as well as random sampling parameter values.

As previously shown in the simulations of the oesophageal parameter set, the spatial
element introduces density fluctuations, demonstrated by the emergence of either double
state cell regions or areas of vacant sites. If the proportion of densely populated or empty
regions produced by the spatial model is low, the homeostatic clonal population signatures
are not affected. In that case, we can assume that such a model can appropriately depict
homeostatic tissue dynamics in two dimensions. The spatially implemented stratification
driven model generated a high proportion of empty patches in the lattice, which influenced
the clonal population dynamics, thus producing unrealistic emergent properties.
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To investigate how the three spatial models perform under different experimentally
inferred parameter conditions of epithelial homeostasis, I considered the proportion of double
/ empty lattice sites as well as the area of the biggest double / empty region as metrics of cell
density variability and thus indicators of each model’s appropriateness.

Figures 4.23 and 4.24 present the values of the two above mentioned metrics for the
experimentally inferred parameter combinations describing different epithelial tissues (Ta-
ble 4.1), at 10 and 50 weeks respectively. A set of random sampled parameter sets were also
used (denoted as "S") in an effort to make the parameter space more evenly spaced.

During the 10th week, the spatial models are largely able to achieve homeostatic condi-
tions for each tissue type, apart from plantar epidermal parameters (Lim et al., 2013), as both
the SP and division driven models produce an increased proportion of high density areas
given the short simulation period. More specifically, whilst the percentages of double sites
and largest empty island had similar values across all other parameter sets and did not exceed
20% and 10% respectively, simulations of Lim et al. (2013) plantar parameters produced a
much higher percentage of such regions (∼35% and 20% respectively).

At 50 weeks, it can be observed that the SP and division driven models can sufficiently
reproduce a relatively low proportion of high density areas for most of the parameter sets,
with the division driven model achieving a lower percentage of crowding regions. The
plantar epidermis (Lim et al., 2013) appears to have a high percentage of double areas
(>35%), therefore the SP and division driven regimes are less successful in reproducing
tissue maintenance behaviour for this parameter set. The stratification driven hypothesis
seems to be the least appropriate model for most of the tested parameters in oesophagus, ear
and plantar epidermis (Piedrafita et al., 2020), as it generates high incidence of gaps in the
simulated tissue. However, it is worth mentioning, that the gap percentage for back (Murai
et al., 2018, Piedrafita et al., 2020) and plantar (Lim et al., 2013) epidermis is lower. From the
three, the parameter set describing back epidermis homeostasis (Murai et al., 2018) achieves
the lowest empty site percentage (<10%). This would suggest that the stratification driven
hypothesis could be a more appropriate model describing tissue homeostasis in this tissue
type. The stratification driven hypothesis has been also proposed by Mesa et al. (2018) as a
homeostatic mode of tissue maintenance, following live imaging in mouse plantar epidermis.

Driven by this, I further examined whether the stratification driven model can successfully
reproduce the homeostatic signatures of cell population dynamics using the back epidermis
(Murai et al., 2018, Piedrafita et al., 2020) and plantar (Lim et al., 2013) data sets. Despite the
percentage of vacant sites being sufficiently low, neither back skin (Piedrafita et al., 2020) nor
plantar (Lim et al., 2013) data sets were able to reproduce the key signatures of homeostasis.
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Single Progenitor Division driven

Single Progenitor Stratification driven

Fig. 4.23 Model comparison on various datasets (t = 10 weeks). Comparison of density variability metrics
(% double / empty lattice sites, % largest double / empty area) in the three spatial models under a set of
experimentally inferred and randomly sampled parameter combinations describing different epithelial tissue
regions. Dots correspond to parameter sets described in Table 4.1.
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Single Progenitor Division driven

Single Progenitor Stratification driven

Fig. 4.24 Model comparison on various datasets (t = 50 weeks). Comparison of density variability metrics
(% double / empty lattice sites, % largest double / empty area) in the three spatial models under a set of
experimentally inferred and randomly sampled parameter combinations describing different epithelial tissue
regions. Dots correspond to parameter sets described in Table 4.1.
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(a) (b)

(c) (d)

Fig. 4.25 Quantitative analysis of spatial stratification driven model simulations for the back epidermis
dataset. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week, from Murai et al. (2018). a) the average clone
size increases over time, b) the number of surviving clones decreases over time, c) proportion of progenitor
cells, d) clone size distribution scales with time. Data correspond to mean values across 100 simulations.
Shaded areas correspond to SD.

Interestingly however, quantitative clonal analysis of the stratification driven model with
back skin parameters (Murai et al., 2018) showed a completely different picture to what was
previously observed in stratification driven simulations. In contrast to a sublinear trend in
average clone size (Figure 4.20c), a nearly linear growth was observed with slope value being
close but not matching the expected rλ/ρ (0.07 instead of 0.09, Figure 4.25a).

The number of clones dropped, nearly matching 1/(1+λ rt) (Figure 4.25b). Moreover,
the proportion of proliferating cells remained largely constant, highlighting no substantial
decline in post mitotic cell population (Figure 4.25c), and the distribution of clone sizes
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appeared to follow the characteristic scaling behaviour (Figure 4.25d). Together, all the
above findings suggest that the stratification driven hypothesis could be a more appropriate
model in describing the dynamics of certain data sets.
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4.6 Discussion

To summarize, the previously discarded spatial information provided by the lineage tracing
experiments can be used to give new insights into the coordinated behaviour of epithelial stem
cells in the context of a tightly packed tissue. Therefore, in this chapter I sought to explore
epithelial stem cell growth dynamics in homeostasis when tissue organisation is explicitly
included. To this end, a CA was used to implement the SP model in two dimensional space.

Simulations of the spatial SP model were initially set up to mimic the dynamics of the
WT mouse oesophageal basal layer. The simulation outputs revealed that the spatial model
is able to reproduce the characteristic features on clonal population dynamics dictated by
the SP paradigm. Interestingly, the explicit accounting of space introduces local, transient
density fluctuations, demonstrated by the emergence of either double state cell regions or
areas of vacant sites.

The above outlined observations reflect the stochastic, cell intrinsic control of cell fate
imposed by the SP model. Cell division and exit of differentiated cells from the basal
layer, albeit two balanced events at the cell population level, are not directly linked. In
a real tissue however, local spatial coordination mechanisms should exist to ensure tissue
level cellular equilibrium (O’Brien and Bilder, 2013). This would imply that the otherwise
successful stochastic model of epithelial homeostasis in the zero dimension might need the
incorporation of cell communication feedback mechanisms to fully capture tissue dynamics
in the two-dimensional space.

Driven by this, the SP model was modified to consider spatial influences on stem cell
stochastic behaviour. The model variant would assume that division and stratification events
are no longer two independent processes, but they are directly coupled. Two different
scenarios were examined: division drives local stratification and stratification drives local
division, two concepts also supported in the literature (Eisenhoffer et al., 2012, Marinari
et al., 2012, Miroshnikova et al., 2018, Mesa et al., 2018). Simulations of the two SP variants
on oesophagus revealed that the division driven hypothesis is capable of reproducing the SP
hallmarks, whereas the stratification driven approach produces an insufficiently populated
epithelial basal layer containing large areas of vacant sites.

The three spatial models were also tested on alternative epithelial tissues (back, ear,
plantar epidermis). The SP and division driven models were able to describe sufficiently
most of the data. Interestingly, the stratification driven hypothesis consistently failed to
recover homeostatic conditions for all parameter sets except back skin (parameters taken
from Murai et al. (2018)). This would suggest that this model could be more appropriate for
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describing the dynamics of particular datasets. Notably, both division driven and stratification
driven (when successful) models did not offer a substantial improvement to the expected
homeostatic dynamics.

Taken together, despite the emergent property of local cell density heterogeneity, I
demonstrated that the SP model continues to match experimental data when neutral clonal
competition in space is explicitly considered. The spatial simulations successfully repro-
duce the fundamental SP signatures on cell populations and therefore the properties of the
system are not affected by the lattice geometry. Thus the spatial SP could be considered
an appropriate model to study the neutral growth dynamics of epithelial stem cells during
homeostasis.





Chapter 5

Non neutral growth is influenced by
spatial constraints and feedbacks

Abstract

The accumulation of non-neutral mutations in cells may result in the formation of persistent
clones which could potentially lead to cancer. In chapter 4, I demonstrated that spatial
constraints do not alter wild-type, neutral epithelial stem cell clonal dynamics. In the
current chapter, I set out to explore the effect of spatial structure on tissue growth and clonal
competition when mutations are non-neutral. For this purpose, the spatial single progenitor
model of epithelial stem cell dynamics was extended to simulate the behaviour of a mutant
tissue. I find that in order to recapitulate non-neutral mutant dynamics whilst maintaining
tissue turnover the spatial models need to take account of feedbacks between neighbouring
cells in the tissue. More specifically, I investigate the growth of p53 mutants in mouse skin
epidermis and define an appropriate feedback mechanism which recapitulates their behaviour.
This mechanism was successfully validated on p53 mutant clonal data from a different tissue,
mouse oesophageal epithelium. I further demonstrate that the growth dynamics of Notch
pathway mutants in mouse oesophagus is described by different feedback rules. These
findings are able to mechanistically distinguish the behaviour of different mutations. I then
explore how these two mutant types compete in space.
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5.1 Introduction

The growth and competition of cells in epithelial tissues plays an important role in both
tissue homeostasis and the robustness to pre-cancer mutation. In such crowded environments,
cell populations constantly compete for space in a controlled manner that minimizes redun-
dant or insufficient cell production and sustains homeostasis. This may be accomplished
by mechanical interactions, e.g. through the mechanically activated ion channel Piezo1
(Gudipaty and Rosenblatt, 2017, Eisenhoffer et al., 2012), and molecular signalling, e.g.
through Notch signalling pathway (Guruharsha et al., 2012), within the tissue. It is worth
noting that recent theoretical studies highlight the role of mechanical cell competition in
tissue development and homeostasis (Lee and Morishita, 2017, Pan et al., 2016, Bielmeier
et al., 2016). Whilst wild-type cells compete neutrally for dominance in the un-mutated
tissue, naturally occurring mutations in individual cells may lend them a fitness advantage
that can allow tissue takeover. Thus, non neutral competition between cells with different
fitness levels leads to the dominance of the fitter population ("winners") at the expense of the
less fit population ("losers"). This is a common mechanism believed to be used by oncogenic
mutations to colonize the tissue and potentially drive preneoplasia and tumour formation.

Mutations in the tumour suppressor gene p53 and Notch pathway have been shown
to exhibit non neutral growth dynamics in epithelial tissues. An increasing body of work
suggests that p53 mutations and inactivation of Notch receptors are highly frequent in
squamous epithelial cancers (Alcolea et al., 2014, Agrawal et al., 2011, Stransky et al.,
2011). Furthermore, recent studies report high incidence of p53 and Notch1 mutated genes
in normal human skin and oesophagus (Martincorena et al., 2015, 2018, Yokoyama et al.,
2019). This highlights the importance of studying the process of accumulation and interaction
of these mutations within tissues in order to understand tumourigenesis. Considering the
above findings, I focused on two lineage tracing experiments which used mouse models to
investigate the growth of p53 and Notch signalling pathway mutations in stratified squamous
epithelial tissues.

Murai et al. studied the fate of epidermal epithelial cells carrying a heterozygous p53 gain-
of-function mutation p53R245W , the mouse equivalent of the frequently detected p53R248W in
both normal and cancerous human epidermis. By inducing a p53R245W (p53∗/wt) mutation in
transgenic mouse epidermal progenitor cells, the growth dynamics of mutants in a background
of their wild-type counterparts was tracked.

Up to 24 weeks post induction, the p53 mutant population outcompeted normal epidermal
cells, clearly indicating their competitive advantage. Beyond that transient period of increased
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mutant clonal growth, the expansion rate of p53∗/wt cells weakened considerably and they
eventually reached a 30% proportion of the basal layer by 15 months. Based on 5-ethynyl-
2’-deoxyuridine(EdU) data, a marker that stains basal cells in S phase of the cell cycle (i.e.
the phase during which DNA replication occurs), the restricted mutant growth at later time
points could not be attributed to a decrease in mutant division rate. Along with the slowing of
mutant population expansion at 24 weeks, a roughly 10% increase in basal layer cell density
was observed, without influencing epidermal functional integrity.

Together, those findings suggested that p53∗/wt epidermal progenitor cells adjust their
fate to respond to alterations in their cellular environment. That is to say, the crowding
induced stress in the basal layer as a result of mutant non-neutral growth may force the return
toward balanced dynamics (Le et al., 2016, Roshan et al., 2016).

Alcolea et al. studied the effects of Notch pathway inhibition in mouse oesophageal
epithelial cells. To do this, they blocked the transcription of Notch receptor’s intracellular
domain using mice expressing a negative form of Mastermind-like 1 (Maml1) protein. The
dynamics of the mutated oesophageal epithelium was followed for 1 year. Over the first 3
months post induction Maml knock outs expanded rapidly at the expense of their wild-type
neighbours. At later time points, mutant growth rate slowed down as soon as Maml clones
started merging. However, the proportion of mutant cells kept increasing until the entire
epithelium was colonised. Despite the overall epithelium being replaced by Notch mutants,
no tumours were formed.

Quantitative clonal analysis suggested that Notch mutants did not undergo divisions
producing two differentiating daughters (i.e. their symmetric differentiation probability
was turned off) and they also promoted the differentiation of the adjacent wild-type cells.
Moreover, they appeared to have an increased division rate and decreased stratification rate.
These observations lend Maml mutants an apparent competitive advantage and explain their
ability to spread across the tissue. Strikingly, once tissue take over completed, the imbalance
in mutant fate reverted towards normal and a new stationary state with a faster turnover was
established.

Collectively, the studied growth of p53 and Maml mutations in mouse epithelia has been
shown to have distinct properties. Whilst both mutant types switch their fate towards the
production of persistent clones, their ability to colonize the tissue differs. Studying the causes
of these distinct mutant growth behaviours would assist to distinguish between less and more
aggressive expansion mechanisms.
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5.2 Spatial SP model of non-neutral competition

The study of p53 and Maml mutant clone dynamics in mouse epithelia has indicated that the
mutant progenitor cells present a fitness advantage over their wild-type (WT) counterparts.
Different potential scenarios can be considered to explain the observed mutant tissue takeover:

• The division rate of mutant cells is faster than that of WT cells.

• The stratification rate of mutant cells is decreased.

• Mutant cells tend to produce a higher proportion of proliferating cells compared to
differentiating cells.

The first two hypotheses do not alter the balanced division outcomes in SP behaviour and
could be modelled by a SP model with altered λ and Γ parameters, leading to a transient
period of expansion before a new stationary state is restored, as observed experimentally.
The third hypothesis, however, biases the division probability outcomes in such a way
that divisions resulting in pairs of stem cells become more likely than divisions giving
differentiated daughters.

There is no indication of p53 mutant cells dividing at different rates to WT, according to
EdU data (Murai et al., 2018). As already mentioned, Maml clones were found to proliferate
and stratify at a higher and lower rate respectively. However, quantitative clonal analysis in
both p53 and Maml mutant clones revealed that a bias towards the production of proliferating
progeny is able to explain the observed mutant behaviour. Such bias results in a gradual
expansion in the proliferating population over time as there are fewer chances for the mutant
clones to be lost by differentiation. Thus, mutant clonal expansion appears to be consistent
with a SP model including a cell fate imbalance (Klein et al., 2010, Frede et al., 2016):

A λ−→


AA r(1+δ )

AB 1−2r

BB r(1−δ )

B Γ−→∅,

(5.1)
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where δ denotes the tilt in cell fate. Therefore, δ = 0 corresponds to homeostasis, δ =
1 implies absence of symmetric differentiation, leading to persistence and δ = -1 implies
absence of symmetric division, leading to extrusion.

To simulate mutant clonal dynamics in two-dimensional space, I used the spatial SP
model with fate imbalance, considering both wild type and mutant epithelial cells. The
choice of the grid architecture, the neighbourhood, the number of states and spatial rules
of the CA model were implemented as described in Section 4.2, page 73. However, a new
mutation-status property was introduced to distinguish mutant cells to wild type cells. In the
case of p53 cells, mutants have the exact same properties as the wild type cells and the only
property that distinguishes the two cell populations is that p53 mutant cells have an innate
bias towards the production of proliferating cells. In the case of Maml cells, mutants will
also have distinct λ , Γ and r values, as inferred by Alcolea et al. (2014). Considering the
above, the spatial SP model, initially described in equation ( 4.1), page 76 is modified as
follows, in order to accommodate the mutant cell population:

A ∅ λ−→



AA r(1+δ )

AB 1
2 − r

BA 1
2 − r

BB r(1−δ )

A X λ−→



DAA r(1+δ )

DAB
1
2 − r

DBA
1
2 − r

DBB r(1−δ )

B Γ−→∅,

(5.2)

where A ∅ denotes a type A cell neighbouring a vacant lattice site and AX denotes a type A
cell neighbouring either a type A or type B cell, thus indicating that there is no neighbouring
empty space. DAA, DAB, DBA, DBB correspond to double occupancies.

Figure 5.1 represents a schematic description of the spatial rules of the non neutral CA
model.
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Fig. 5.1 Rules of the non-neutral spatial SP model. Illustration of the spatial SP model including a bias in
cell fate. Proliferating cells in yellow and differentiating cells in blue. Proliferating cells undergo a division
type which is decided by the probability of symmetric divisions, r and the bias δ . In case of wild type cells,
δ = 0 and division probabilities remain unchanged. In case of mutant cells, 0 < δ ≤ 1, hence symmetric
division (AA) is favoured. If a vacant site exists (top), one daughter cell occupies the mother cell’s space and
the second the neighbouring empty space. If there is no empty space in the immediate neighbour (bottom), the
two daughters occupy the mother cell’s space, thus creating a double cell occupancy. Double state cells are
released once a neighbouring lattice site becomes available.

To simulate the time evolution of the system, the Markovian stochastic simulation
algorithm, initially described in 4.2 was modified as follows:

1. Start by defining a grid of NxN sites with A and B cells randomly seeded. The fraction
of A cells is calculated ρ parameter.

2. Insert randomly mutant cells of type A.



5.3 Logistic growth quantitatively explains takeover of p53 mutant cells 117

3. For every cell on each lattice site, draw a random number from an exponential distribu-
tion with mean 1/λ or 1/Γ to assign time of next event (division or stratification) for
A and B cells respectively.

4. Select cell with the smallest next event time assigned. Current time is updated to the
smallest next event time.

5. If an A cell is selected, use a random number from a uniform distribution U ∈ (0,1) to
choose the division type to occur by comparing U to division probabilities. Symmetric
division probabilities for mutant cells are biased according to δ (5.2). Assign the
division type as a next event for the selected cell. If a B cell is selected, assign
stratification as a next event for the selected cell.

6. If next event is division, all neighbouring places are checked for empty space. In the
case of an existing neighbouring space, one new daughter cell will replace the mother
cell and the other will occupy the empty neighbouring space. If there is no empty
neighbouring space available then both will remain at the mother cell’s space (creating
a “double state” cell), until a neighbouring space is released. If stratification is the
next event, B cell stratifies, leaving an empty space, which allows a pair of potential
neighbouring “double state” daughters to be released.

7. Repeat steps 4-7 until there are no A or B cells left or time threshold is reached.

5.3 Logistic growth quantitatively explains takeover of p53
mutant cells

To address the question of how the spatial system responds to the induction of p53 mutations,
computational simulations of the non neutral SP CA model were performed. The spatial
SP model with biased proliferation probabilities was used to explore whether the above
experimental observations can be reproduced and explain the causes of p53 mutant growth
slowness. The simulations were set up and performed as described in Section 4.3, page
80. Initial simulations of the p53 clone takeover modified a set of wild-type cells to have
an imbalance in symmetric cell fates. To replicate the lineage tracing experiment, 1% of
p53 mutant cells, matching the reported mutant induction (Murai et al., 2018), were also
introduced at the beginning of each simulation. The following parameter values from Murai
et al. (2018) were used:

r = 0.06, ρ = 0.77, λ = 1.16 week−1, Γ = 3.9 week−1, δ = 0.95
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5.3.1 Spatial simulations of p53 clone growth in back epidermis

Spatial simulations of p53 mutant cells growing within a wild type background achieved
quantitative agreement with experimental observations (Figure 5.2). Without further additions
or fitting of the model, p53 clone growth (Figure 5.2a) and tissue takeover (Figure 5.2b)
match experimental observations, showing an initial exponential growth slowing over time.

Despite matching experimental data well, the simulations present a pathological behaviour.
Double occupancies progressively accumulate in the basal layer over time. As a consequence,
the overall tissue turnover slows and simulations can finish within the lifetime of the mouse
when the simulated tissue becomes packed with double occupancies (Figure 5.2b,c,d),
whereas the mouse tissue is found to have an increase in cell density of only ∼ 10%. Over
time, the build up of double state cells leads to the increase of trapped differentiating cells
which are unable to stratify. This reflects the imbalance in stem cell:differentiated cell ratio,
eventually leading to drop in proliferation rate across the population (Figure 5.2e,f).

A typical simulation trajectory at different time points (0, 10, 20, 30 and 60 weeks),
illustrated in Figure 5.3 provides a visual explanation on why the simulations fail to reproduce
late time point dynamics.

The mutant population starts occupying space due to their property of producing descen-
dants with decreased probability of leaving the tissue. The limited space availability impacts
the growth of the wild type cells, which start forming double islands. In contrast to the wild
type simulations, where double occupancies are transient events observed uniformly in the
grid, in mutant simulations double cells are particularly notable in the mutated regions which
become packed earlier. As a result, mutant cell clones expand up to a certain time point,
when they become surrounded by double state wild type cells and their growth declines. The
grid becomes heavily overcrowded, rendering the model unable to reach the lifespan of a
mouse. Each grid space is occupied by two cells (double occupancies), either p53 mutant or
wild type and as there is no space left for new division events, the simulation is terminated
earlier than expected. These emergent properties imply that the tendency of the mutant
population to produce persistent clones challenges the spatial SP model.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.2 Quantitative analysis of the spatial SP model including fate bias, simulating p53 mutant growth
in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week, δ = 0.95, from
Murai et al. (2018). a) the simulated p53 average clone size matches observations, box plots correspond
to experimental clone counts, dashed red lines: mean, solid green line: median, b) simulated and observed
percentage of p53 mutant cells, inset: last simulated time point of each repetition (100 simulation repetitions
were performed), c) Empirical cumulative density function (ECDF) of last simulated time point across 100
repetitions, d) cell density increases up to 100%, e) stem cell:differentiated cell ratio drops, f) the number
proliferation and stratification events drops. a,b,d,e,f: Data correspond to mean values across 100 simulations.
Shaded areas correspond to SD.
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t=0 (weeks) t=10 (weeks) t=20 (weeks)

WT

WT double occupancy

p53 mutant

p53 mutant double occupancy

Empty space

t=30 (weeks) t=60 (weeks)

Fig. 5.3 Spatial non-neutral SP model time lapse. Typical simulation time lapse of the SP spatial model
of p53 mutant growth. Cells are placed on a 2D 100x100 hexagonal lattice. Mutant behaviour fills the
grid and slows growth across the basal layer, leading to 100% increase in cell density Parameters used:
r = 0.06, ρ = 0.77, λ = 1.16/week, δ = 0.95, from Murai et al. (2018).

A more detailed examination of the simulated p53 mutant population expansion (Fig-
ure 5.2b) revealed a slight overestimation of the mutant percentage compared to the ex-
perimental observations at the earliest time points. This reflects the relative uncertainty in
calculating the initial induction level from the mutant exponential growth relative to the wild
type situation. To further investigate the possibility of a lower mutant induction, I repeated
the simulations of the spatial model testing a range of levels of p53 mutant induction, smaller
than the reported 1% (Figure 5.4). Computational mutant induction level sweep suggested
that a ∼ 0.04% initial proportion of p53∗/wt cells matches the experimental observations at
the earliest time points. However, a striking output feature of the induction sweep analysis is
that the model was consistently unable to fit last time point due to the unrealistic slow down
in tissue turnover.
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Fig. 5.4 Simulated percentage of the p53 mutant population under different initial proportions of mutant
cells. An induction of ∼ 0.04% improves the quantitative agreement between simulated and observed data at
the two earliest time points. Despite that, the computational model consistently fails to fit last time point under
all induction level regimes. The fit of a 0.04% p53 mutant induction (black curve) is also illustrated in the inset
plot.

The above outlined observations clearly show that mutant behaviour fills the grid and
slows growth across the whole tissue, leading to 100% increase in cell density, in contrast
to experiments (∼ 10% increase) (Murai et al., 2018). The growth of p53 mutant clones
approximates a logistic curve, but that without including limitations on mutation induced
expansion the overall proliferation rate of the tissue drops due to space restrictions. As a
result of this pathology, it is vital that we introduce feedbacks on stem cell fate choices that
limit growth on the basis of crowding, despite the CA model’s mutant takeover and average
clone size being in agreement with the experiments.

5.3.2 p53 mutant logistic-like growth is confirmed by space-free model

To confirm that the tissue size was acting as a limiting factor and not the hexagonal grid, the
model was re-implemented as a rule based model with a carrying capacity. Clonal data were
generated using Bio-PEPA, a framework for modelling biochemical networks (Ciocchetta
and Hillston, 2009). 10000 proliferating and differentiating cells, of which 1% corresponded
to p53 mutants were initially considered (consistent to lattice dimensions) and population
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dynamics was updated using fluid flow approximation. In fluid flow approximation discrete
jumps are approximated by continuous flows between the states of the system and a set of
ordinary differential equations (ODEs) is derived that approximate the average behaviour
of the continuous time Markov Chains (CTMC) (Massink et al., 2010, Hillston, 2005). The
resulted mutant cell populations were then compared with the ones derived from the lattice
model (Figure 5.5).

Fig. 5.5 Percentage of the p53 mutant population in spatial and rule based simulations with population
limits. The two model types display similar behaviour. This suggests that logistic growth alone explains the
experimentally observed behaviour of p53∗/wt cells.

Interestingly, the two types of simulations display similar behaviour in mutant tissue
takeover. As in lattice simulations, the proportion of mutant cells in the rule based model
initially rises exponentially and then gradually slows down, reaching a plateau at late time
points. A small shifting up of the mutant takeover curve produced by the rule based model
indicates some kind of spatial influence. Local spatial constraints, imposed by the CA model,
might affect the growth of individual clones, slightly slowing the takeover process. These
simulations confirmed that whilst the presence of the grid slowed growth slightly, the growth
curves were ultimately logistic-like. Therefore, the mutant growth behaviour on tissue scale
appears to be constrained by tissue size. The reported phenotypic plasticity of p53 mutations
in response to crowding matches logistic growth.
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5.4 Introduction of spatial rules for feedback

Adding simple spatial rules for feedback could maintain tissue takeover and early clone
growth whilst allowing tissue to turnover. In support of this, previous studies in epithelial
tissues of different model organisms argue that local crowding and cell deformation induced
by proliferation could trigger the delamination of nearby non-apoptotic cells (Eisenhoffer
et al., 2012, Marinari et al., 2012, Miroshnikova et al., 2018). Furthermore, a recent study on
mouse plantar epidermis suggests that division is stimulated by a stratification event in the
local environment (Mesa et al., 2018). Additionally, theoretical studies have also stressed the
importance of feedback mechanisms in regulating tissue growth (Shraiman, 2005, Vincent
et al., 2013, Lee and Morishita, 2017). These spatial regulatory behavioural mechanisms
between surrounding cells provide means to ensure tissue’s homeostatic function by locally
balancing stem cell density.

Considering the above reported response to crowding and the previously outlined model’s
pathological behaviour, the spatial model of p53 mutant growth was further refined to account
for feedback effects controlling tissue growth.

5.4.1 Mechanical Feedbacks

Epithelial cells are constantly experiencing forces from their environment. The passive
response of cells to mechanical forces generated within the tissue was initially considered.
Two possible feedback rules were tested:

1. Diffusion: On the basis of the idea that spatial coordination mechanisms are seeking to
minimize the local density imbalance within different regions of the tissue, cells were
thought to be able to diffuse for a short distance. The induced stress from a division
event could be released by the pushing of cells towards a nearby low density site.

To include the rule of diffusion in the CA model, I made use of an extended neighbour-
hood. A dividing cell, instead of considering the six adjacent lattice sites for placing the
new daughters, is able to exploit a vacant site in the expanded neighbourhood of twelve
sites through the displacement of a cell from the immediate neighbour (Figure 5.6).
If no empty space exists in the extended neighbourhood, the two new daughters are
placed on the same space, creating a double occupancy.
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→ →

Fig. 5.6 Mechanical feedback of diffusion. A dividing cell seeks a vacant space in the extended neighbour-
hood of twelve lattice sites. If an empty space is available, an adjacent cell moves toward the vacant site, leaving
space for the new daughters.

2. Crowding release: Motivated by the reports of cell extrusion events to compensate
proliferation induced local stress (Eisenhoffer et al., 2012, Marinari et al., 2012,
Miroshnikova et al., 2018, Frede et al., 2016), I introduced an analogous feedback
response in my model. That is, overcrowding produced by double occupancies was
released by allowing the immediate stratification of trapped differentiated cells.

According to this feedback rule, every double occupancy consisting of at least one
differentiating cell (AB, BA or BB double state cells) would lead to an instantaneous
stratification event, allowing the release of stress induced by the double state cell
(Figure 5.7).

(a) (b)

(c) (d)

Fig. 5.7 Mechanical feedback of crowding release. A division event in a region without available adjacent
empty space introduces a double occupancy (a). Since the division event lead to the production of a differentiat-
ing cell (AB or BB divisions) (b), one newly born differentiating daughter exits instantaneously the basal layer
(c) to release the crowding (d).
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Mechanical feedbacks successfully reproduce the homeostatic dynamics

To test whether the addition of such mechanical feedbacks has any impact on the expected
SP homeostatic behaviour, each of the two new rules was initially applied to simulations of
wild type epithelial basal cells. Figure 5.8 confirms that the spatial SP model with diffusion
successfully reproduces the homeostatic hallmarks of cell population dynamics.

Similarly, the implementation of the spatial feedback rule with crowding release in
wild type simulations revealed that the key features of epithelial homeostasis were success-
fully replicated (Figure 5.9). An observed characteristic property of the crowding release
mechanism though is that the system maintains a constant basal layer density, a signature
of homeostasis, following an initial ∼ 10% decline (Figure 5.9e). However, as already
mentioned, this does not alter the SP hallmarks.

Importantly, the inclusion of either the diffusion or the crowding release feedback in
wild type simulations appears to reduce the cell density fluctuations observed in the initial
spatial SP model, as the models with feedbacks produce a less broad distribution in basal cell
density compared to that of the model without feedbacks (Figures 5.8f, 5.9f). Furthermore,
the cell density distribution in the feedback models qualitatively appears to resemble more
with that of microscopy images (Figures 5.8f, 5.9f).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8 Quantitative analysis of the spatial fate bias SP model with diffusion, not including mutant cells,
in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week, from Murai et al.
(2018). Key homeostatic properties replicated: a) proportion of progenitor cells remains constant, b) the number
of surviving clones decreases over time following 1

1+λ rt , c) the average clone size increases over time with
slope τ = rλ

ρ
, d) clone size distribution scales with time, e) overall basal layer density remains constant, f) cell

density distributions in confocal microscopy images of mouse oesophagus, in spatial SP model with diffusion
and in spatial SP model without cell density dependent feedbacks (t = 52 weeks). a,b,c,d,e: Data correspond to
mean values across 100 simulations. Shaded areas correspond to SD.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.9 Quantitative analysis of the spatial fate bias SP model with crowding release, not including
mutant cells, in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week,
δ = 0.95, from Murai et al. (2018). Key homeostatic properties replicated: a) proportion of progenitor cells
remains constant, b) the number of surviving clones decreases over time following 1

1+λ rt , c) the average clone
size increases over time with slope τ ∼ rλ

ρ
, d) clone size distribution scales with time, e) overall basal layer

density drops during the first week but afterwards it remains constant, f) cell density distributions in confocal
microscopy images of mouse oesophagus, in spatial SP model with crowding release and in spatial SP model
without cell density dependent feedbacks (t = 52 weeks). a,b,c,d,e: Data correspond to mean values across 100
simulations. Shaded areas correspond to SD.
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p53 mutant simulations including the diffusion feedback

Computational simulations of the spatial SP model with p53 mutant cells including the
feedback of diffusion were performed. As demonstrated in Figures 5.10, 5.11, considering a
wider neighbourhood for placing the newly born cells does not achieve any improvement in
reproducing the experimental observations and releasing the crowding frustration. On the
contrary, the diffusion feedback mechanism facilitates mutant expansion as p53 cells are less
restricted in their spreading. A visual inspection of the grid (Figure 5.10) highlights this issue,
illustrating a sharp increase in the incidence of double occupancies between weeks 30 and 40.
Analysis of p53 mutant growth dynamics revealed that, whilst the average clone size matched
the data (Figure 5.11a), the mutant population increased rapidly (Figure 5.11b), resulting in
the tissue being overcrowded faster (Figure 5.11c,d). The emergence of an increased density
system forces the simulations to terminate earlier than expected, with the majority of the
simulations being unable to reach the average mouse lifespan of ∼ 80 weeks (Figure 5.11e).

t=0 (weeks) t=10 (weeks) t=30 (weeks)

WT

WT double occupancy

p53 mutant

p53 mutant double occupancy

Empty space

t=40 (weeks) t=70 (weeks)

Fig. 5.10 Spatial non-neutral SP model with diffusion time lapse. Typical simulation time lapse of the
SP spatial model of p53 mutant growth with diffusion. Cells are placed on a 2D 100x100 hexagonal lattice.
Mutant population expands rapidly, promoting an acute increment of double occupancies. Parameters used:
r = 0.06, ρ = 0.77, λ = 1.16/week, δ = 0.95, from Murai et al. (2018).
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(a) (b)

(c) (d)

(e)

Fig. 5.11 Quantitative analysis of the spatial fate bias SP model with diffusion, simulating p53 mutant
growth in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week, δ = 0.95,
from Murai et al. (2018). a) the simulated p53 average clone size matches observations, box plots correspond
to experimental clone counts, dashed red lines: mean, solid green line: median, b) simulated and observed
percentage of p53 mutant cells, c) stem cell:differentiated cell ratio drops, d) cell density sharply increases up
to 100%, e) last simulated time point of each repetition (100 simulation repetitions were performed). a,b,c,d:
Data correspond to mean values across 100 simulations. Shaded areas correspond to SD.
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p53 mutant simulations including the crowding release feedback

The alternative feedback mechanism of crowding release was also explored. The inclusion
of instantaneous stratification of differentiating cells in regions of overcrowding (double
occupancies) largely succeeds in releasing the stress imposed by mutant growth. This is
confirmed by a smaller rise in cell density (Figures 5.12a), which allows a substantial increase
in the duration of the computational simulations beyond a mouse lifetime (Figures 5.12b).
Nevertheless, this spatial rule causes an initial ∼ 10% drop in cell density (Figure 5.12a)
and a reduction in the number of differentiating cells, demonstrated by an increase in ρ

value (Figure 5.12c). The aforementioned emergent property, also observed in wild type
simulations (Figures 5.9a,e), might create more space for the p53∗/wt cells to grow, leading
to an enhanced takeover at later time points (Figure 5.12d), which in contrast to the average
clone size (Figure 5.12e) does not match the experimental observations. Figure 5.13 illustrates
a typical simulation trajectory where the crowding release mechanism was applied.

Taken together, the previously analysed feedback mechanisms could not successfully
reproduce the exact behaviour of the system. The crowding release model tends to overesti-
mate the mutant takeover whereas the diffusion model leads to a rapid expansion of mutant
clones resulting in the simulated tissue becoming overcrowded very quickly. These findings
indicate that the p53 mutant takeover dynamics is insufficiently explained solely by the pure
effect of physical forces. The scenario where cells communicate with their neighbours via
molecular signalling and make fate choices in response to local stress should be considered.
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(a) (b)

(c) (d)

(e)

Fig. 5.12 Quantitative analysis of the spatial SP fate bias model with crowding release, simulating p53
mutant growth in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week,
δ = 0.95, from Murai et al. (2018). a) Cell density increases up to 50% following an initial 10% drop, b) last
simulated time point of each repetition (100 simulation repetitions were performed), c) stem cell:differentiated
cell ratio increments, d) an overestimation in simulated tissue takeover compared to experimental values is
observed, e) the simulated p53 average clone size matches observations, box plots correspond to experimental
clone counts, dashed red lines: mean, solid green line: median. a,b,c,d: Data correspond to mean values across
100 simulations. Shaded areas correspond to SD.
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Fig. 5.13 Crowding release time lapse. Typical simulation time lapse of the SP spatial model of p53 mutant
growth with crowding release. Cells are placed on a 2D 100x100 hexagonal lattice. The proportion of double
occupancies is substantially reduced, releasing the stress imposed by mutant growth.

5.4.2 Cell - cell communication feedbacks

In seeking to determine a more suitable spatial rule to simulate p53 mutant behaviour,
achieving both fit to experimental observations and tissue survival, feedbacks based on cell-
cell communication signalling were introduced. The new feedback rules were based on the
hypothesis that cells sense the density of their immediate neighbourhood and depending on
how crowded their local environment is, a bias towards the production of either proliferating
or differentiating progeny is decided. Such a feedback mechanism would appear consistent
with previous studies reporting density dependent spatial regulation in epithelial tissues (see
5.4).

Two classes of feedback mechanisms were tested, termed “upstream” and “downstream”
to reflect which cells are affected by the feedback and their relationship to the mutations
under study (Figure 5.14). In the upstream feedback, all cells respond to crowding events
by inducing an additional imbalance in cell fate to promote differentiation, and cells with
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mutations sum their imbalances. This arises as the genes changed in response to crowding
events are either independent or upstream of the mutated genes. In the downstream feedback,
only mutated cells respond to crowding events as the gene target being altered by crowding
is considered to be downstream of the mutant gene. In each case, a threshold for activation
was set based on the total sum of immediate neighbours surrounding a cell, treating double
occupancies as two cells.

(a)

(b)

Fig. 5.14 Feedbacks based on cell-cell communication. a) The "upstream" feedback hypothesis assumes that
genes changed in response to crowding are independent of the mutated genes, b) the "downstream" feedback
hypothesis suggests that the genes altered by crowding are downstream of the mutated genes and therefore,
only mutant cells respond to crowding events.

The upstream feedback enhances tissue takeover

Initially, the upstream feedback mechanism was tested. An additional fate bias parameter, δ ′,
was introduced to the fate imbalance spatial SP model. The value of δ ′ depends on the local
cell density, i.e. number of neighbouring cells. A neighbourhood consisting of more than a
defined number of cells would be considered as "crowded" whereas fewer neighbouring cells
than the defined crowding cut-off would indicate an underpopulated region ("empty"). In
the former case, δ ′ is negative rendering the fate of dividing cells tilted towards symmetric
differentiation to release crowding. In the latter case, a positive δ ′ is chosen, favouring
symmetric division to fill the empty sites. When the neighbourhood is neither "crowded"
nor "empty", it indicates that the local cell density is homeostatic and therefore δ ′ = 0
(Figure 5.15).
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(a)

(b)

(c)

Fig. 5.15 Upstream feedback. The fate decision process in every simulated cell is affected by the number
of neighbouring cells. a) When a dividing cell is surrounded by a crowded environment, it is prone to
produce differentiating progeny, promoting local stress release, b) when the neighbourhood of a dividing cell
is underpopulated, a preference towards the production of proliferating progeny is decided, to fill the empty
space, c) when the neighbourhood of a dividing cell is homeostatic, i.e. neither crowded nor empty, division
probabilities are balanced. Dividing cells are displayed in yellow, differentiating cells are displayed in blue.
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B Γ−→∅,

(5.3)

where δ ′ ∈ [0,1]. As each cell on the grid has six neighbours in normal conditions, i.e. no
overcrowding, no gaps, the local cell density crowding cut-off was initially set to six cells.
Furthermore, as wild type cells do not have a δ , they would solely respond to the cell density
bias (δ ′), whereas in the case of p53 mutant cells the cell density bias (δ ′) and their innate
fate bias (δ ) would be counterbalanced (5.3).

Initially, simulations not introducing mutant cells were performed and confirmed that the
upstream feedback regime is able to replicate the SP signatures on cell population dynamics
(Figure 5.16). Notably, the inclusion of this feedback mechanism reduced the local cell
density heterogeneity previously observed in the initial SP spatial wild type simulations
by producing a less broad basal cell density distribution (Figure 5.16f). Subsequently, the
new feedback model was applied to mutant tissue simulations and was tested on a set of δ ′

parameter values (Figure 5.17).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.16 Quantitative analysis of the spatial fate bias SP model with upstream feedbacks, not including
mutant cells, in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week,
from Murai et al. (2018). Key homeostatic properties replicated: a) proportion of progenitor cells remains
largely constant, b) the number of surviving clones decreases over time following 1

1+λ rt , c) the average clone
size increases over time with slope τ ∼ rλ

ρ
, d) clone size distribution scales with time, e) overall basal layer

density remains constant, f) cell density distributions in confocal microscopy images of mouse oesophagus, in
spatial upstream feedback SP model and in spatial SP model without cell density dependent feedbacks (t = 52
weeks). a,b,c,d,e: Data correspond to mean values across 100 simulations. Shaded areas correspond to SD.



5.4 Introduction of spatial rules for feedback 137

(a) (b)

(c)

Fig. 5.17 Quantitative analysis of the spatial fate bias SP model with upstream feedbacks, simulating p53
mutant growth in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week,
δ = 0.95, from Murai et al. (2018). Simulated results across different δ ′ levels: a) simulated p53 average clone
size matches observations, box plots correspond to experimental clone counts, dashed red lines: mean, solid
green line: median, b) simulated and observed percentage of p53 mutant cells, c) simulated overall cell density.
Data correspond to mean values across 100 simulations. Shaded areas correspond to SD.

As shown in Figure 5.17, the upstream regime cannot achieve both fit to the experi-
mental observations (mutant takeover and tissue cell density) and stress release. Smaller δ ′

values show much closer agreement to the experimental values of average clone size and
mutant tissue takeover (Figures 5.17a,b), but they are unable to achieve crowding release
(Figure 5.17c). On the contrary, when applying higher δ ′ values, a more realistic tissue
overall cell density is accomplished (Figure 5.17c), but a much higher proportion of mutant
cells is observed (Figure 5.17b). This indicates that a stronger density feedback, applied to
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all cells in the tissue, makes competition last longer as it maintains the fitness advantage of
the mutant population. A much more fluid tissue is generated which leads to an increase in
mutant takeover beyond the values observed in the experiments. On the other hand, a weaker
density feedback has almost the same effect as the no feedback simulations would have, that
is, closer match to mutant takeover but growth decline due to overcrowding. Taken together,
the inclusion of a spatial feedback applied upstream to mutant cells enhances tissue takeover
and therefore is inappropriate to describe the dynamics of p53 mutants. A different approach
of applying cell-cell communication feedbacks should then be adopted.

Downstream feedbacks appropriately describe mutant dynamics

As an alternative hypothesis, the downstream feedback, where the response to a crowded
neighbourhood is activated downstream to p53 mutations mechanisms was tested. This
implies that whilst p53∗/wt cells initially grow unrestricted and outcompete wild type cells,
they eventually lose their proliferative advantage due to space restrictions. The downstream
feedback hypothesis would be more consistent with the observed phenotypic plasticity of
p53 mutant population in response to crowding (Murai et al., 2018).

To implement the new feedback mechanism, no additional cell density fate bias parameter
(δ ′) was used but p53 mutants were set to lose their innate bias towards the production of
proliferating progeny, (δ ), as a reaction to stress induced in their local neighbourhood. Thus,
the downstream feedback model can be described by (5.2), page 115 of a spatial model with
fate bias. The value of δ parameter is turned off when the local cell density (i.e. number of
cells) of a dividing p53∗/wt cell’s neighbourhood consists of more than six cells, switching
the mutant behaviour to balanced mode (δ = 0).
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(a) (b)

(c) (d)

Fig. 5.18 Quantitative analysis of the spatial fate bias SP model with downstream feedbacks, simulating
p53 mutant growth in the basal layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ =
1.16/week, δ = 0.95, from Murai et al. (2018). Black curve: fate bias SP model with downstream feedbacks,
blue curve: fate bias SP model without feedbacks: a) the increase in the simulated overall basal cell density
at 67 weeks (end of experiment) is closer to the experimentally measured 10% increase, b) last simulated
time point of each repetition (100 simulation repetitions were performed), c) the simulated p53 average clone
size, box plots correspond to experimental clone counts, dashed red lines: mean, solid green line: median, d)
model underestimates the percentage of p53 mutant cells. a,c,d: Data correspond to mean values across 100
simulations. Shaded areas correspond to SD.

To explore the spatial system of interacting mutant and wild type cells under the down-
stream feedback scenario, computational simulations were performed. The spatial model
of p53 mutant growth with downstream feedback response produced a substantially less
crowded basal layer compared to the mutant model with no feedbacks. The cell density
increase at 67 weeks was closer to but did not match the experimentally measured 10%
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at the same time point (Figure 5.18a). This enabled model simulations to finish at time
points beyond a mouse’s lifetime (Figure 5.18b). However, an underestimation of mutant
average clone size and tissue takeover was observed. Whilst the simulated p53∗/wt average
clone size was lower than the experimental mean but within the interquartile range (IQR) of
clone size distribution (Figure 5.18c), the p53∗/wt percentage was not in agreement with the
experiments (Figure 5.18d).

Two different interpretations of the reduced takeover may exist. One possible reason
would be that mutant cells might respond to a different crowding level. The emergence of
stress experiencing areas in the neighbourhood of mutant cells at early time points might also
explain the limited takeover. Mutant p53 cells tend to be surrounded by regions of double
occupancies (Figure 5.19), resulting in their restrained expansion as they lose their growth
advantage.

t=0 (weeks) t=10 (weeks) t=30 (weeks)

WT

WT double occupancy

p53 mutant

p53 mutant double occupancy

Empty space

t=50 (weeks) t=80 (weeks)

Fig. 5.19 Downstream feedback model time lapse. Typical simulation time lapse of the SP spatial model of
p53 mutant growth with downstream feedbacks. Cells are placed on a 2D 100x100 hexagonal lattice. Mutant
p53 cells tend to be surrounded by regions of double wild type cells, resulting in their restrained expansion as
they lose their growth advantage.
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Driven by these assumptions, the rules of the downstream feedback model were slightly
modified to explore whether the issue in the simulated mutant takeover could be resolved.

The speculation that the mutant cells activate their response to stress at a higher than the
initially considered 6-cell density was investigated. To include this in the model, simulations
were repeated using less strict neighbourhood crowding cut-offs. I tried three different density
cut-off values, 7, 8 and 9 cells.

(a) (b)

(c) (d)

Fig. 5.20 Quantitative analysis of the spatial fate bias SP model with downstream feedbacks using differ-
ent crowding cut-offs, simulating p53 mutant growth in the basal layer of back epidermis. Parameters:
r = 0.06, ρ = 0.77, λ = 1.16/week, δ = 0.95, from Murai et al. (2018). a) the simulated p53 average
clone size broadly fits experimental observations, box plots correspond to experimental clone counts, dashed
red lines: mean, solid green line: median, b) simulated overall basal cell density increases at higher thresholds,
c) last simulated time point of each repetition (100 simulation repetitions were performed), d) simulated and
observed percentage of p53 mutant cells. Lower thresholds underestimate data. a,b,d: Data correspond to mean
values across 100 simulations. Shaded areas correspond to SD.
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Clonal analysis of the downstream feedback model with varied cell density cut-offs
showed that none of them is able to give both agreement with experimental observations
and crowding release. All tested crowding thresholds produce acceptable fits in terms of the
average clone size (Figure 5.20a). Nevertheless, a more relaxed crowding cut-off value leads
to an increased basal layer cell density (Figure 5.20b). Despite the 7 cell cut-off simulations
being able to maintain tissue turnover for a longer time period (Figure 5.20c), they appear to
underestimate the mutant population proportion (Figure 5.20d). This indicates that decreasing
the mutant cell population sensitivity to crowding by using a higher neighbourhood cell
density threshold does not appear to be compatible to the experimental observations.

As already pointed out, another possible limiting factor of mutant expansion is the
crowded areas (i.e. accumulation of double occupancies) at their clone boundaries. To
overcome this, I repeated the simulations including the crowding release rules, where B
type cells in double occupancies are allowed to stratify instantaneously, as described in
Section 5.4.1, page 123. A typical simulation trajectory of the model with the two feedbacks
combined is able to successfully maintain tissue turnover (Figure 5.21).
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Fig. 5.21 Combined downstream feedback and crowding release time lapse. Typical simulation time lapse
of the SP spatial model of p53 mutant growth with combined downstream feedbacks and crowding release.
Cells are placed on a 2D 100x100 hexagonal lattice. The combined feedback model is in quantitative agreement
with the experimental observations and successfully maintains tissue turnover.
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(a) (b)

(c) (d)

Fig. 5.22 Comparison of different spatial feedback models simulating p53 mutant growth in the basal
layer of back epidermis. Parameters: r = 0.06, ρ = 0.77, λ = 1.16/week, δ = 0.95, from Murai et al.
(2018). The combined model describes the data more appropriately. a) Simulated p53 average clone size, box
plots correspond to experimental clone counts, dashed red lines: mean, solid green line: median, b) simulated
and observed percentage of p53 mutant cells, c) simulated overall basal cell density, d) last simulated time point
of each repetition (100 simulation repetitions were performed). a,b,c: Data correspond to mean values across
100 simulations. Shaded areas correspond to SD.

The combined feedback model is in quantitative agreement with the experimentally
observed average clone size (Figure 5.22a) and tissue takeover (Figure 5.22b). Moreover a
less crowded basal cell density is produced (Figure 5.22c). Importantly, such model is also
able to simulate tissue turnover for substantially larger periods, rendering potential tissue
dynamics simulations of a human system feasible (Figure 5.22d).
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Table 5.1 provide provides a summary of all simulation setups performed to test possible
feedback regimes and identify which one appropriately describes p53 mutant dynamics.

Setups
Mechanical

Cell-Cell
Communication Key Observations

Diffusion
Crowding
Release

Up-
stream

Down-
stream

1 ✓
Mutants spread faster,

overcrowding.

2 ✓

No overcrowding,
Takeover overestimation

at later time points.

3 ✓
Enhanced takeover,

no fit to experiments.

4 ✓

No overcrowding,
takeover underestimation,

Overcrowding at high crowding cut-offs

5 ✓ ✓
No overcrowding,

agreement with experiments
Table 5.1 Feedback simulation setups. A summary of the computational experiments performed for iden-
tifying the most appropriate feedback mechanism that explains the behaviour of p53∗/wt cells in skin. Both
mechanical and cell-cell communication feedback mechanisms explored. A downstream feedback mechanism
combined with crowding release successfully reproduces p53 mutant dynamics.

Considering the above, it is evident that a downstream feedback mechanism with instant
stratification of double cells and a relaxed crowding cut-off can suitably explain p53 mutant
behaviour in mouse epidermis.

5.5 Spatial simulations of p53 clone growth in oesophageal
epithelium

Having specified the spatial rules for the downstream feedback mechanisms which succeed in
both recapitulating p53 mutant dynamics and maintaining tissue survival in back epidermis,
I then sought to validate whether such feedback model would be suitable to describe p53
mutant behaviour in an independent dataset. To this end, I used a mouse oesophageal p53
mutant clonal dataset, provided by Phil Jones at Sanger Institute.
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To estimate the parameters r, λ , ρ and δ for the mutant simulations, I assumed that r,
λ and ρ remain unchanged, given that p53∗/wt cells divide and stratify at the same rates as
their wild type counterparts. Based on this assumption the only unknown parameter would
be the fate bias of mutant cells, δ . From Klein et al. (2010), δ can be estimated from a linear
regression applied to the ln(average clone size), as shown in Figure 5.23. The slope of the
line equals 2δ rλ , where δ is the unknown parameter.

Fig. 5.23 Estimate δ for the oesophageal dataset. Linear regression applied to the ln(average clone size) of
p53∗/wt cells in oesophageal epithelium over all time points. The slope of the line gives 2δ rλ .

The r, λ and ρ parameters describing the homeostatic cell population dynamics in
oesophageal epithelium are provided by Doupé et al. (2012). However, as also specified in 4.5,
page 102 two more parameter combinations are available, inferred from quantitative clonal
analysis of alternative oesophageal datasets. The additional parameter sets resulted from
the following steps: new H2B-GFP dilution experiments using a more sensitive microscope
were performed. Cell cycle properties estimated from these experiments were incorporated
in model simulations and new parameter values were measured using a maximum likelihood
inference approach (Piedrafita et al., 2020). With that in mind, simulations of the downstream
feedback model in oesophageal epithelium were performed using all three available parameter
sets proposed for this tissue (Table 5.2).

Analysis of the simulated p53 mutant cell populations and clone sizes demonstrates that
the model is in quantitative agreement with the experimental values (Figure 5.24). This
confirms that the downstream feedback mechanism is appropriate to describe the behaviour
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Tissue Reference λ (/week) r ρ δ

Oesophagus (OE) Doupé et al. (2012) 1.9 0.1 0.65 0.29
Oesophagus (OE) Piedrafita et al. (2020) 2.9 0.06 0.56 0.32
Oesophagus (OE) Piedrafita et al. (2020) 2.9 0.1 0.65 0.19

Table 5.2 SP model parameter sets for oesophageal epithelium. Historical (Doupé et al., 2012) and recent
(Piedrafita et al., 2020) parameter values inferred for progenitor cell behaviour in murine oesophageal epithelium,
as derived from quantitative lineage tracing. Fate bias parameter (δ ) was estimated from linear regression
applied to the ln(average clone size) of p53∗/wt cells.

of p53 mutant cells in the oesophageal epithelium and is also largely robust to different
parameter sets inferred for this tissue.

Taken together, the growth of p53 mutant cells resembles a logistic curve and is shown to
be described in space by a non neutral SP model with cell density feedback rules applied
downstream to p53 mutations. Importantly, such spatial model recapitulates the observed
mutant behaviour in datasets from two different tissues, the mouse oesophagus and back epi-
dermis. The downstream feedback mechanism is consistent with the p53 mutants’ adaptable
fate, suggested by their observed incomplete tissue takeover.
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(a) (b)

(c)

Fig. 5.24 Quantitative analysis of the spatial fate bias SP model with the downstream feedback, simulat-
ing p53 mutant growth in the basal layer of oesophageal epithelium under different inferred parameter
sets. a) Simulated p53 average clone size, box plots correspond to experimental clone counts, dashed red lines:
mean, solid green line: median, b) simulated and observed percentage of p53 mutant cells, c) simulated overall
basal cell density. Data correspond to mean values across 100 simulations. Shaded areas correspond to SD.

5.6 Loss of Maml maintains clone advantage through a
uniform response to crowding

I have already demonstrated through spatial modelling and analysis of p53 mutant growth in
mouse back skin and oesophagus that a downstream feedback model explains the behaviour
of this type of mutation. I then sought to model how Maml mutants evolve and compete in
space as they are shown to exhibit a more aggressive behaviour compared to p53∗/wt cells.
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Specifically, early dynamics of Maml knock outs have been shown to have their symmetric
differentiation probabilities minimized and promote the differentiation of adjacent wild type
cells (Alcolea et al., 2014). Moreover, they proliferate 3 fold faster and stratify at lower
rates. As a consequence, at 52 weeks Maml clones colonized the entire epithelium causing a
∼ 10% increase in the basal cell density. However, tissue integrity was not compromised as
no tumours were formed (Alcolea et al., 2014).

To answer the question whether tissue colonization by Maml clones can be attributed
to their fate imbalance and different division and stratification rates alone, I used the initial
spatial non neutral SP model without feedbacks ((5.2), page 115). Similarly to p53 mutations,
Maml simulations were set up and performed as described in Section 4.3, page 80. The grid
was initialized by randomly seeded proliferating and differentiating basal cells, with 1% of
the lattice sites being occupied by mutants to mimic the reported induction of Maml cells in
the corresponding lineage tracing experiment. The following parameter values from Alcolea
et al. (2014), were used:
Maml cells: r = 0.055, ρ = 0.12, λ = 6.0 week−1, Γ = 0.8 week−1, δ = 1.0.
WT cells: r = 0.1, ρ = 0.65, λ = 1.9 week−1, Γ = 3.5 week−1, δ = 0.

5.6.1 Spatial simulations of Maml clone growth in OE

Spatial simulations of Maml cells growing in a wild type background using the spatial non
neutral SP model were not able to reproduce Maml mutant behaviour (Figure 5.25). Maml
cells are able to occupy only 30% of the basal layer (Figure 5.25,a). A 100% increase in the
basal layer density is also observed (Figure 5.25,b), highlighting the already mentioned issue
of overcrowding and the need for introducing spatial feedback rules.

I then investigated whether the downstream feedback model which was previously shown
to successfully describe p53 mutant behaviour would be able to reproduce the dynamics
of Maml mutants. Spatial simulations of the downstream feedback model did not achieve
the experimentally observed full tissue takeover at one year post induction (Figure 5.26,a).
There is an enhanced expansion in Maml cell populations compared to the p53 equivalent
simulations, which could be attributed to their faster division and slower stratification rates.
Nevertheless, even the apparent advantage of an elevated proliferation rate does not make
the Maml cells able to occupy the entire grid. Moreover, the inclusion of the downstream
feedback rules is not able to prevent the overcrowding effect (Figure 5.26,b).
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(a) (b)

Fig. 5.25 Quantitative analysis of the spatial fate bias SP model, simulating Maml mutant growth in the
basal layer of oesophageal epithelium. Parameters used from Alcolea et al. (2014) a) simulated and observed
percentage of Maml mutant cells disagree, b) simulated overall basal cell density increases substantially,
reflecting overcrowding issues. Data correspond to mean values across 100 simulations. Shaded areas
correspond to SD.

(a) (b)

Fig. 5.26 Quantitative analysis of the spatial fate bias SP model with downstream feedback, simulating
Maml mutant growth in the basal layer of oesophageal epithelium. Parameters used from Alcolea et al.
(2014) a) simulated and observed percentage of Maml mutant cells disagree as simulated Maml population only
partially colonise the tissue, b) simulated overall basal cell density increases. Data correspond to mean values
across 100 simulations. Shaded areas correspond to SD.

The disagreement between computational simulations and experimental observations
implies that the growth of Maml mutants is distinct to that of p53∗/wt cells. This leads to
the rejection of the downstream feedback model and the seeking of an alternative feedback
mechanism to explain Maml mutant behaviour. The ability of these mutations to fully take
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over the tissue would be more compatible with a feedback that affects both mutant and
wild-type cells equally. Considering this, I performed simulations of the upstream response
rule (5.4.2, page 133), where the cell density feedback is applied to all cell populations.

(a) (b)

Fig. 5.27 Quantitative analysis of the spatial fate bias SP model with upstream feedback, simulating
Maml mutant growth in the basal layer of oesophageal epithelium. Parameters used from Alcolea et al.
(2014). Density feedback bias (δ ′ = 1) and crowding cut-off was set to 7 cells. a) Tissue takeover by Maml cell
population is successfully reproduced, b) simulated overall basal cell density increases. Data correspond to
mean values across 100 simulations. Shaded areas correspond to SD.

(a) (b)

Fig. 5.28 Quantitative analysis of the spatial fate bias SP model with upstream feedback, setting the
probability of symmetric division to zero in the case of an overcrowded neighbourhood. Parameters used
from Alcolea et al. (2014). Density feedback bias (δ ′ = 1) and crowding cut-off was set to 6 cells. a) modelled
percentage of Maml mutants fit to observations, b) cell density increases to a lower extent. Data correspond to
mean values across 100 simulations. Shaded areas correspond to SD.
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Simulating Maml spatial growth using upstream feedbacks gave an excellent fit to the
experimental observations of tissue takeover (Figure 5.27a), indicating that this type of
spatial rules can suitably explain Maml behaviour. However, there was a 60% increase in
cell density at the end of 52 weeks, which contradicts the experimentally observed ∼ 10%
(Figure 5.27,b). To address this issue, I repeated the simulations by adding an extra rule
which was applied to every cell in the grid that had an overcrowded neighbourhood (n > 8
cells). In such case the probability of that cell to undergo symmetric division was minimized.

Visual examination of the underlying simulations suggested that the difference in growth
patterns between the upstream and downstream models arises as in the upstream model
the reduction in δ in all cells had the effect on ensuring that cells continued dividing, but
maintained the relative advantage of the mutant clone. This effect, where Maml1 loss gives a
constant fitness advantage whilst the p53 mutant advantage is transient, was subsequently
confirmed using a spatial Moran model.
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Fig. 5.29 Upstream model time lapse simulating Maml population. Typical simulation time lapse of the SP
spatial model of Maml mutant growth with upstream feedback. Cells are placed on a 2D 100x100 hexagonal
lattice. Maml cells takeover the whole grid, successfully recapitulating experimental observations.
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The new simulations presented a slightly compromised fit in the percentage of Maml
cells (Figure 5.28a) but led to a more moderate increase in basal cell density (∼ 40%) by
52 weeks (Figure 5.28b). As mutant behaviour was still largely reproduced, that model
could be considered as appropriate for describing Maml dynamics. This is also confirmed
by visual examination of the underlying simulations (Figure 5.29). The upstream feedback
mechanism successfully reproduced the growth pattern of Maml cells, as the response to
crowding by both wild type and mutant populations had the effect on ensuring that cells
continued dividing, but maintained the relative advantage of the mutant clones.

5.7 p53 and Maml in competition

In the previous sections of this chapter, I explored how two different mutant types (p53
and Maml) grow and compete for space within a wild type environment. To do this, I
used spatial computational simulations which were compared with existing experimental
lineage tracing datasets in mouse stratified squamous epithelial tissues. I demonstrated that
the logistic growth of p53∗/wt cells can be described by a model with density-dependent
feedbacks activated downstream to p53 mutations, therefore affecting solely mutant cells.
Conversely, I found that a model with feedbacks affecting both wild type and mutant cell
populations is more appropriate to describe the evolution of Maml knock out clones. These
results imply that the two mutant populations show a diverse response to crowding, providing
a mechanistic explanation of the observed distinct growth modes.

Having shown that both sets of mutations can be understood in terms of the interactions
of the underlying pathways and the tissue, I sought to assess how a single model that could
enable both feedbacks behaved and how the mutations coexist and interact in the tissue. For
that purpose, I implemented a unified spatial model, where I introduced downstream and
upstream feedback rules in order to be able to model both mutants in the same simulation.
Clonal data from healthy tissues and tumours has shown that in squamous oesophageal
tumours, p53 is relatively enriched in the tumour, but NOTCH1 mutations are depleted
(Martincorena et al., 2015, 2018), strongly suggesting that in healthy tissue NOTCH1 loss
has a tumour protective effect (Higa and DeGregori, 2019). As Maml represents a gene with
control over several Notch related genes, I therefore modelled the effect of NOTCH1 and
p53 mutations in order to examine how the different growth behaviours in the tissue alter the
competition. Mutant competition analysis was performed for oesophageal epithelium.
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(a) (b)

Fig. 5.30 Simulations of the unified model with p53 and Maml mutants separately match experimental
data. a) simulated and observed percentage of Maml mutant cells in OE, b) simulated and observed percentage
of p53 mutant cells in OE. Data correspond to mean values across 100 simulations. Shaded areas correspond to
SD.

To ensure the validity of the unified model, I performed simulations of p53 and Maml
mutants separately and confirmed that the individual behaviour of each mutant type was
successfully reproduced (Figure 5.30).
The following parameter values were used:
p53 cells: r = 0.1, ρ = 0.65, λ = 1.9 week−1, Γ = 3.5 week−1, δ = 0.29.
Maml cells: r = 0.055, ρ = 0.12, λ = 6.0 week−1, Γ = 0.8 week−1, δ = 1.0.
WT cells: r = 0.1, ρ = 0.65, λ = 1.9 week−1, Γ = 3.5 week−1, δ = 0.

I then proceeded to perform simulations of Maml and p53 mutants competing in a
wild type background. The grid was initialized by randomly seeded proliferating and
differentiating basal cells, with 1% of the lattice sites being occupied by p53 mutants and
another 1% by Maml mutants. A striking effect resulting from mutant clone spatial interaction
is that p53∗/wt cell population appears to shrink (Figure 5.31).
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Fig. 5.31 Competition simulations of p53 and Maml mutant cells. p53 and Maml mutants were co-induced
in a grid with wild type cells to investigate their spatial interaction. Maml mutants eventually took over the
tissue, outcompeting p53 mutant population. p53 mutant shrinkage is easier observed in the inset plot, which
shows the takeover of p53 mutant population on a smaller scale.

To gain insights into the effect of mutant competition in space, I sought to quantitatively
describe potential different spatial features of the two mutant populations. To this end, I used
the following metrics for each mutant population:

• proportion of boundary cells: cells that have at least one neighbour of a different type.

bm

cm
,

where bm denotes the number of boundary cells for mutation m and cm the total number
of cells for mutation m.

• cell mixing index: the proportion of neighbours belonging to a different type

∑
bm
i=1

n′i
ni

cm
,

where n′i denotes the number of different type neighbouring cells of a boundary cell i,
and ni the total number of neighbours of boundary cell i.
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The above metrics were measured for all p53 and Maml cells at different time points
(Figure 5.32). From the outputs of this analysis, it is evident that the two different mutations
show distinct properties. The majority of p53 mutant cells are consistently found in bound-
aries with Maml or wild type populations, implying that p53∗/wt cells are not able to form
coherent groups in space (Figure 5.32a). On the contrary, the proportion of boundary Maml
cells progressively decreases and is almost minimized at later time points, as they colonize
the entire grid. Furthermore, p53 mutants mixing index is consistently higher, indicating
that they are more likely to share junctions with different cell types and therefore are more
dispersed (Figure 5.32b).

(a) (b)

Fig. 5.32 Quantitative analysis of mutant spatial features. a) Proportion of boundary cells in p53 and Maml
cells, b) cell mixing index, which is proportion of neighbours belonging to a different type. The cell mixing
index was calculated for each mutant cell and the values were averaged over each mutation.

In seeking to understand more aspects of p53 and Maml mutant competition in space, I
designed a series of different mutational events and explored how these affected the behaviour
of the two mutant populations. The different competition scenarios included co-induction,
timed inductions, and variable levels of relative induction.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.33 Tissue takeover of p53 and Maml mutant populations across different competition scenarios
where either the induction time or the induction level were changed. p53 (a) and Maml (b) tissue takeover
in simulations where Maml cells were introduced at 0, 5, 10 and 20 weeks, p53 (c) and Maml (d) tissue takeover
in simulations where p53 cells were introduced at 0, 5, 10 and 20 weeks, p53 (e) and Maml (f) tissue takeover
in simulations where the two mutant populations were introduced in different proportions in the tissue. Data
correspond to mean values across 100 simulations. Shaded areas correspond to SD.
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Strikingly, in every simulation scenario Maml population outcompetes p53∗/wt . p53
mutant clones that had grown for extended periods before Maml mutations were introduced
regressed more slowly, as the larger clones were more slowly outcompeted but ultimately the
constant fitness advantage offered by Maml mutations eventually led to the loss of p53∗/wt

clones. (Figure 5.33). As expected, the later the Maml population is introduced, the higher
the percentage of p53 mutant population reaches in the tissue (Figure 5.33a,b). In p53∗/wt

delayed introduction simulations, the later the p53 mutants are introduced the more difficult
is for them to expand as Maml cells have time to grow without competition and are already
established when p53 mutant cells are inserted to the system (Figure 5.33c,d). Similar
dynamics is observed in settings of variable induction levels. Simulations where p53 mutant
induction was increased twofold, fourfold and sixfold were performed as well as scenarios
where Maml induction was reduced by half were tested. As expected, an increased takeover
of p53 mutants is observed when their induction level is higher but soon their percentage
drops (Figure 5.33e,f). Collectively, the above observations highlight that Maml knock outs
appear consistently more aggressive over their p53 competitors.

Aside from the apparent "winner" status of Maml population, the outcomes of the different
competing settings underline interesting aspects of the "loser", p53 mutant behaviour. A
closer inspection of the p53 mutant takeover plots reveals that the rate at which p53∗/wt

takeover diminishes varies across different cases (Figure 5.33). For instance, one can see that
the highest proportions of p53 mutant population in the tissue are achieved in the simulations
where p53 induction level is increased sixfold or fourfold (Figure 5.33e). Furthermore, an
increased p53 takeover is observed in the case where Maml cells are introduced at the 20th
week (Figure 5.33a). Despite the enhanced tissue takeover percentage at higher induction
levels, its drop appears to be quicker compared to the delayed Maml induction condition.

To further investigate that, I assessed the loss rate of p53 mutant population across all
competition scenarios. Figure 5.34 presents the average percentage loss in p53∗/wt tissue
takeover per week, starting from the week when takeover was the highest until the final week
of the simulation. Interestingly, these calculations confirm that the p53 takeover loss rate is
higher when the competition simulation is initialized with a substantially higher proportion
of p53∗/wt compared to Maml cells.
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Fig. 5.34 p53∗/wt loss rate. Average percentage of p53 mutant takeover loss rate across all simulated com-
petition scenarios and the base competition simulations (same induction level, same induction time point).
Calculations measured the difference in tissue takeover between the week when takeover was the highest until
the final week of the simulation.

The above findings are also compatible with the analysis of the boundary cell proportion
and mixing index. In simulations of Maml induction at 20 weeks, the proportion of p53
boundary cells and the p53 mixing index are reaching their minimum values between 40 to 50
weeks (Figure 5.35a,b), concurring with the time period when p53∗/wt takeover is reaching
its peak (Figure 5.33a). An analogous pattern is observed in the spatial metrics of simulations
with increased p53 induction level. The peak week of tissue takeover (Figure 5.33e) coincides
with the time point where the proportion of boundary cells and the mixing index of p53
mutants decrease (Figure 5.35c,d). The lower values of the spatial quantitative metrics
indicate that p53 mutant cells appear less dispersed and form more coherent clusters when
their tissue takeover reaches its maximum level.

A direct comparison of the spatial metrics values between these two competition settings
highlights a shifting in the axis of time (Figure 5.35e,f). When p53 mutant induction is
increased, both boundary cell proportion and mixing index reach their minimum values
several weeks earlier compared to the scenario where Maml mutants are introduced at 20
weeks (∼ 30 weeks vs ∼ 50 weeks respectively). Following their minimum value, the two
spatial metrics start rising again, indicating an increase in the level of cell dispersion. This
increase appears to happen earlier when p53 mutants are introduced in increased numbers,
consistent with the higher loss rate observed for this simulation condition (Figure 5.34).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.35 Proportion of boundary cells and proportion of different type neighbours (cell mixing index)
in Maml and p53 mutants as calculated for different competition scenarios. a,b) simulations of p53
cells introduced at 0 week at 0.01 induction and Maml cells introduced at 20 weeks at 0.01 induction, c,d)
simulations of p53 cells introduced at 0 week at 0.06 induction and Maml cells introduced at 0 week at 0.01
induction, e,f) comparison of the two scenarios. a,b,c,d: solid black line corresponds calculations for the p53
population at the base competition simulations (same induction level, same induction time point), black dashed
line corresponds to calculations for the p53 population at the given scenario, red solid line corresponds to
calculations for the Maml population at the base competition simulations (same induction level, same induction
time point), red dashed line corresponds to calculations for the Maml population at the given scenario. Data to
correspond to mean values across 100 simulations.
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A visual inspection of the simulations considering two above mentioned competition
scenarios can give more insights in the way the two mutant populations interact in space.
When p53 mutants are introduced in the grid in much higher numbers compared to their Maml
competitors (Figures 5.36, 5.37), they would expand and form aggregates more easily and
faster. However, as they cluster in space and tend to appear in more crowded environments
and encounter more p53∗/wt neighbours, they would start losing their innate proliferating
advantage. The subsequent contact with Maml cells which start expanding substantially in
the following time points would lead to their loss as the Maml population is more aggressive.

t=10 (weeks) t=30 (weeks) t=60 (weeks)
WT Maml Maml double occupancy p53 p53 double occupancy

Fig. 5.36 Enhanced p53 mutant induction scenario. Typical simulation time lapse of the SP spatial
competition model with enhanced p53 mutant induction level. Cells are placed on a 2D 100x100 hexagonal
lattice. p53∗/wt cells are introduced in proportions six fold higher than Maml cells (0.06 and 0.01 respectively).

t=20 (weeks) t=45 (weeks) t=80 (weeks)
WT Maml Maml double occupancy p53 p53 double occupancy

Fig. 5.37 Delayed Maml induction scenario. Typical simulation time lapse of the SP spatial competition
model with delayed Maml induction time. Cells are placed on a 2D 100x100 hexagonal lattice. p53∗/wt cells
are introduced at the beginning of the simulation whereas Maml cells at 20 weeks.
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5.8 Cell competition as a wider paradigm

Competition simulations of p53 and Maml mutants might suggest that pre-cancer dynamics
can be explained in terms of clone competition within the tissue environment. That it to say,
the way cells interact in space dictates growth dynamics and may determines how mutations
expand and whether this limits or promotes cancer development. The competition hypothesis
can be used to provide a conceptual explanation on the observed dynamics in patients with
oesophageal cancer. Barrett’s oesophagus is a pre-malignant state, where normal squamous
epithelial stem cells in the lower oesophagus are transformed to simple columnar type cells. It
has been observed that patients with tumours that are adjacent to Barrett’s tissue have a higher
survival, though the mechanism for this is as yet unclear (Sawas et al., 2018). The increased
survival may be a result of competition between populations of cells, as the presence of
Barrett’s tissue effectively restrains the growth of the tumour. Therefore, the ultimate fate of
Barrett’s tissue may be determined by mutations received early in the development process.
That is to say, whether a region of Barrett’s tissue will develop into cancer may be determined
by mutations that occur prior to Barrett’s expansion and presentation in the clinic. To test
this hypothesis explicitly I performed simulations of the spatial SP model considering two
configurations:

1. Two cell clones with competitive advantage over wild type cells, growing next to each
other, which represented the case of tumour adjacent Barrett’s. Barrett’s cells were
considered to be less fit than tumour cells.

2. One cell clone growing in a wild type environment, which represented the case of
tumour with no adjacent Barrett’s.

Both mixed and single populations were simulated in a space originally containing 10,000
cells, and each simulation was repeated 100 times. One can observe that in competition
with Barrett’s cells, cancer cells are effectively restrained in their growth and take over a
smaller portion of the tissue (Figure 5.38). In the absence of a competing Barrett’s population,
tumour cells take over most of the space. Together, these observations are consistent with the
hypothesis that competition, even with a less fit population, can restrain the growth of the
tumour and thereby increase survival. Although these models do have simplifications, they
demonstrate a general principle of how spatial competition influences cancer progression.
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(a)

(b)

Fig. 5.38 Adjacent Barrett’s oesophagus limits the growth of cancer clones, revealed by cellular au-
tomata simulations. a) Visualisations of the growth of cancer clones (black) in a predominantly wild type
environment (yellow) shows how takeover is effectively limited by the presence of Barrett’s clones (red). b)
Averaging takeover across multiple repetitions highlights that this process is highly robust.
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5.9 Wounding

The introduction of feedbacks to the system further allows testing for response to tissue level
challenges. Wounding events drive proliferation to close wounds behind a non-proliferating
front (Rognoni and Watt, 2018, Doupé et al., 2012). Whilst the spatial SP model does not
describe the peripheral cells, I performed simulations with wounding and compared the
wound closure behaviour with experimental data. Several recent studies have investigated
the process of wound repair through computational modelling (Staddon et al., 2018, Tetley
et al., 2019, Andasari et al., 2018, Li et al., 2016).

To investigate wound healing with the spatial SP model, I induced wounding events by
introducing a patch of vacant lattice sites in the grid and simulated wound closure. Two
simulation approaches were followed: in the first approach, I included feedbacks in the
model (cells responded to local density as in the upstream feedback mechanism) whilst in
the second, no feedbacks were applied. I found that when feedbacks are included, the gap in
the grid is closed at a faster rate, showing that the model with feedbacks is more efficient at
wound healing (Figure 5.39). However, the spatial model is substantially slower at closing
the wound compared to experimental data from mouse oesophagus, which report that the
tissue was repaired in 5 days (Doupé et al., 2012). This suggests that the cell migration
observed in tissue wounding situations needs to be explicitly included in the spatial model to
simulate tissue repair, in order to achieve a faster closure rate comparable to the one observed
experimentally.

Fig. 5.39 Simulating wound healing. The SP spatial model with feedbacks closes wounds at a faster rate
compared to the non-feedback model.



5.10 Discussion 165

5.10 Discussion

To summarize, in this chapter I explored the growth and competition of non-neutral mutations
in stratified squamous epithelia using spatial models. Mutations in the tumour suppressor
gene p53 and inhibition of the Notch pathway through Maml knock out were modelled. The
studied dynamics of p53 and Maml clones in mouse epithelia has been found to be highly
distinct. Whilst Maml knock outs are able to dominate the whole tissue (Alcolea et al.,
2014), p53 mutants initially expand but they eventually occupy no more than 30% of the
tissue (Murai et al., 2018). I showed that in order to recapitulate these behaviours whilst
maintaining tissue turnover the spatial models need to take account of feedbacks between
neighbouring cells in the tissue.

I demonstrated that p53 clone growth approximates a logistic curve, but that without
including limitations on mutation induced expansion the overall proliferation rate of the
tissue drops due to space restrictions. In contrast, the ability of Maml mutations to take
over the stem cell population reflects a feedback that affects both mutant and wild-type cells
equally. Thus, for reproducing p53 mutant behaviour, I used a model where the response to
crowding events was applied solely to mutant cells, indicating activation downstream to p53
mutations ("downstream" feedback). Such model appears consistent with the p53 mutants’
adaptable fate, suggested by their observed incomplete tissue takeover. On the contrary, I
modelled Maml dynamics using a feedback mechanism which required an independent or
upstream to mutation response to crowding ("upstream" feedback), consistent with the ability
of Maml cells to evict their neighbours during their early growth (Alcolea et al., 2014). These
spatial models of Maml and p53 mutant growth could provide a mechanistic explanation of
the observed distinct behaviours of the two mutant types, suggesting an increased sensitivity
of p53∗/wt clones to cell density.

p53 and Maml competition in space was also explored. A striking effect resulting from
the spatial interaction of the two mutations in a wild type background is that p53∗/wt cell
population is outcompeted by Maml population and appears to shrink. The winning behaviour
of Maml cells is consistent across a range of competition scenarios, where the two mutant
populations are introduced in the simulations at different time points or proportions. A further
quantitative comparison of the spatial features of mutant competition revealed distinct growth
patterns. Whilst Maml cells form coherent aggregates in space which progressively expand
at the expense of their neighbours, p53∗/wt cells initially cluster but eventually appear more
dispersed and less cohesive.
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Taken together, these findings suggest that the distinct tissue takeover outcomes may be
attributed to the differential response of p53 and Maml mutations to crowding. Moreover,
according to the competition simulations, the sensitivity of p53 mutant cells to increased
cell density environments might be the cause of their loser status. The crowding sensitivity
as a hallmark of loser cells is also supported by previous studies (Eisenhoffer et al., 2012,
Marinari et al., 2012, Wagstaff et al., 2016, Levayer et al., 2016). Furthermore, the increased
dispersion of p53 mutants at later time points in competition simulations, indicate that this
spatial emergent property might be a result of their mixing with Maml populations. This
would be consistent with previous studies, correlating the probability of loser cell elimination
with the surface of contact shared with winners (Levayer et al., 2015, Bove et al., 2017).
Further experimental work on p53 and Maml competition in mouse epithelia would shed
more light on how these two mutants interact in mammalian tissues.

The two distinct feedbacks mechanisms that describe mutant dynamics may suggest
the distribution of mutations observed in human datasets. Recent studies identified high
incidence of many of the frequently found mutated genes in tumours such as TP53 and
NOTCH1 in healthy human skin and oesophagus (Martincorena et al., 2015, 2018, Yokoyama
et al., 2019). Strikingly, a higher frequency of NOTCH1 mutations is reported for healthy
human oesophagus compared to oesophageal squamous cell carcinomas whilst the opposite
applies to TP53 mutations. Considering the consistent winning behaviour of NOTCH1 over
p53 mutants in competition simulations and given the paucity of NOTCH1 mutations in
tumours, it is tempting to speculate that the aggressive fitness of NOTCH1 may offer a
tumour-protective effect.



Chapter 6

Discussion

Abstract

In this thesis, I explored how space changes growth and how it affects the ability of mutant
cells to spread within tissues, providing useful insights on understanding pre-cancer dynamics.
Towards this goal, I initially sought to quantify epithelial homeostatic dynamics and presented
a method that appropriately parameterises the system.

I have demonstrated that the explicit inclusion of spatial constraints do not alter neutral
dynamics in squamous epithelia. However, non-neutral dynamics require the incorporation
of feedbacks based on the response to the neighbouring cellular density. Based on such
feedbacks, I investigated the growth of advantageous mutations and provided a mechanistic
explanation of the observed differences in their growth.

A particular outcome of this thesis is that spatial competition and the way mutant cells
respond to spatial constraints defines the early steps of tumour formation.

6.1 Parameterisation of epithelial homeostasis

Epithelial tissue maintenance is particularly important to understand homeostasis and pro-
cesses such as aging, preneoplasia and cancer formation. The investigation of mutant and
pre-neoplastic dynamics necessitates understanding how a healthy tissue is maintained.
Therefore, it is important to retrieve quantitative information of the homeostatic epithelial
stem cell dynamics through accurate parameterisation, which was my initial focus. Stem
cell dynamics in multiple squamous epithelial tissue has been argued over several years
to be described by the single progenitor model (Clayton et al., 2007, Doupé et al., 2010,
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2012, Lim et al., 2013, Rompolas et al., 2016). Using three parameters, the division rate,
the stratification rate, and the probability of symmetric division, this model predicts average
clone size, clone size distributions, tissue homeostasis, and cell survival probabilities.

In this thesis, I sought to test and validate the SP model in depth. I identified issues in the
proposed analytical solution for SP parameter inference, with the most important one being
the collision in parameter probabilities. I further tested the analytical approach on synthetic
datasets and found that the method was overly precise, producing unrealistic 95% confidence
intervals. Importantly, when tested synthetic datasets that explicitly accounted for realistic
cell cycle distributions and inter-mice biological variation, the proposed parameter values
were inaccurate with the true values outside error bars. I explored and compared alternative
strategies for analyzing experimental datasets, identifying an SMC-ABC approach as the
best in terms of efficiency and appropriate error estimation.

The main outcome of the above analysis was the identification of the most appropriate
method for analysing lineage tracing data which would allow new datasets to be analysed
accurately and efficiently. The above findings showed that the parameter inference process
is highly sensitive to biological variation and highlighted the need to be extremely cautious
with statistical analysis especially when sampling is low. This is further demonstrated by
the analysis of synthetic datasets with included inter-mice variability. These datasets were
generated assuming a typical number of mice used in a lineage tracing experiment (two or
three per time point). The likelihood distributions calculated from individual time points
varied across time and were insufficient to estimate parameters on their own. When com-
pared with likelihood distributions calculated from experimental measurements, whilst the
distributions were generally highly similar, the small number of biological replicates at each
time point leaves them prone to distortion by chance parameter combinations. Given that
the appearance of individual time points has been used to justify the consideration of more
complex models of stem cell hierarchy (Mascré et al., 2012), this could influence the interpre-
tation of experimental data analysis. These findings would suggest that increasing sampling
at individual time points whilst reducing the total number of time points would minimize this
effect without impacting parameter estimation. Considering that the experimental protocols
using animal models are expensive and time consuming, this would be a recommendation for
future experimental design.
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6.2 Neutral dynamics is unchanged when space is explic-
itly considered

Having identified a suitable method for accurate parameterisation, I further challenged the SP
model and introduced spatial constraints to explore how these altered neutral dynamics. Sim-
ulations of the spatial SP model revealed that the model continues to describe neutral growth
as it was able to replicate the key homeostatic signatures on stem cell population dynamics.
This was consistent across different datasets. Nevertheless, the spatial model generated some
interesting emergent properties. As cell fate decision is considered a stochastic, cell intrinsic
process, local imbalances in cell density (gaps or thickenings) were observed. These events
were transient but not realistic as demonstrated by comparison with microscopy tissue images.
The presence of unrealistic gaps or double cells might reflect the spatial restrictions imposed
by the underlying cellular automaton grid, as cells were restricted in a fixed regular lattice.
Visualising the grid differently, e.g. through Voronoi diagrams might overcome such issues.
Despite the emergence of these properties, the spatial SP model successfully recovered the
homeostatic behaviour.

The variability in cell density observed in simulations suggested that in vivo, cell fate
decision outcomes might be directly coupled to keep a homeostatic balance. The coupling of
division and stratification is a concept already discussed in previous studies. Recent work of
Miroshnikova and colleagues suggested that proliferation drives local stratification in mouse
developing epidermis (Miroshnikova et al., 2018). Furthermore Mesa et al. (2018) proposed
that stratification triggers the division of nearby cells in adult mouse plantar epidermis.
However, variations of the spatial SP model where division and stratification events were
linked did not seem to offer a substantial improvement to the expected homeostatic dynamics.
On the contrary, the stratification driven regime produced a high proportion of empty sites,
thus failing to reproduce homeostasis for most of the parameter sets tested. This indicates
that this model might be appropriate for certain parameter sets. Additionally, the division
driven model revealed patterns of clustering in proliferating and differentiating cells.

Collectively, the above observations demonstrate how small changes in a simple model
may lead to interesting patterns of packing. Considering the different proposed models for
epithelial homeostasis, it would be interesting to test whether a more complex, hierarchical
model would be successful in recapitulating the signatures of homeostasis if implemented in
space. The dynamics of a simple model may be also altered by the explicit consideration
of the characteristic tissue geometry. That is to say, the underlying structural properties of
different tissues have a direct impact on cell growth and spatial distribution. For instance, in
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tissues with a more complex architecture such as the intestinal crypts, the compartmentalised
spatial organisation of cells into glands leads to segregated cell populations and limits
the extent to which individual clones can grow. Quantifying the spatial patterns in cell
organisation and clone shapes using spatial metrics would allow further assessment of the
effects of alternative models and different geometries on dynamics. This could be addressed
in future research.

6.3 Competition of advantageous mutations in space

In order to explore competition of advantageous mutations within the tissue, I challenged
the spatial SP model even further by considering non-neutral growth. The role of space is
of paramount importance, dictating how mutants accumulate, interact and spread in tissues.
Competition between cells in tissues determines the ability of individual clones to dominate
the tissue. I modelled the dynamics of p53 and Notch related (Maml1) mutations, which
have been shown experimentally to grow in distinct ways (Murai et al., 2018, Alcolea et al.,
2014). In contrast to the spatial simulations of homeostasis, I found that the spatial SP
model was unable to simulate non-neutral dynamics without accounting for local cell density
dependent feedbacks. Therefore, I modelled non-neutral growth considering a spatial SP
model with both a growth advantage but also innate negative feedbacks based on cellular
density. Interestingly, the introduction of such feedbacks in simulations of the neutral system
fixed the previously observed cell density fluctuations, as the local cell density distribution
was comparable to that in microscopy images.

Based on observed growth patterns, I proposed two distinct feedback mechanisms that
successfully reproduce the observed p53 and Notch behaviour, thus providing a mechanistic
explanation of the different growth patterns. Consistent with their rapid takeover and ability
to eject their neighbours during early growth as shown by EdU labelling experiments (Alcolea
et al., 2014), I modelled Maml1 growth considering an upstream to mutations response to
crowding ("upstream" feedback). On the contrary, the transient advantage of p53 mutant
clones suggested a feedback response downstream to p53 mutations ("downstream" feedback).
The simulations of p53 mutant growth showed that when p53 clones collide they lose their
advantage and their growth becomes slowed, suggesting a differential sensitivity of the two
mutant types to crowding. These feedbacks were based on the cellular density (i.e. number
of cells) in each cell’s neighbourhood. Alternative density metrics, e.g. the proportion of
proliferating cells in each cell’s neighbourhood could also be tested.
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As p53 and Maml1 mutants presented a highly distinct behaviour, it would be interesting
to investigate whether this is reflected in differences in the morphologies of their cells and/or
clones. Therefore, an interesting future direction would involve the comparative analysis
of cell and clone shapes between different mutations and the wild type population. The
lineage tracing data available did not provide information regarding physical properties of
the system, such as stress magnitude. New experiments measuring cell mechanics would
assist in simulating and analysing these properties using more complex cell based models
which incorporate cell mechanical parameters explicitly.

The aggressive phenotype of Maml1 cells was maintained in competition simulations.
Maml1 mutants always acted as "winners", outcompeting p53 mutant cells, a behaviour
consistent across a series of different competition settings. Together, these findings may
have implications on the distribution of mutations observed in human datasets. Although
mutations in TP53 and NOTCH1 genes are considered cancer causing, it has been shown
recently that TP53 is relatively enriched in squamous oesophageal tumours whereas NOTCH1

mutations are depleted. Additionally, the same studies report a higher and lower frequency of
NOTCH1 and TP53 mutations respectively in phenotypically healthy tissues (Martincorena
et al., 2015, 2018, Yokoyama et al., 2019). These observations, along with the consistent
winning behaviour of NOTCH1 over p53 mutants in competition simulations strongly suggest
that non-neutral competition may offer a tumour protective effect.

This hypothesis demonstrates that pre-cancer dynamics and progression to cancer can be
explained in terms of clone competition within the tissue environment. The way cells interact
in space dictates growth dynamics and may determines how mutations expand and whether
this limits or promotes cancer development. Spatial competition could also be considered
as a paradigm for understanding the progression of mutated cells from Barrett’s to cancer.
The increased survival observed in patients with tumours growing adjacent to Barrett’s tissue
(Sawas et al., 2018) may be a result of competition between populations of cells, as the
presence of Barrett’s tissue effectively restrains the growth of the tumour.

The work presented in this thesis highlighted the implications of cell competition within a
spatially constrained tissue environment in pre-cancer progression. As spatial modelling has
been shown to provide useful insights on tissue dynamics, cell competition in space could
be further explored to answer new questions. The lattice models used for the purposes of
this thesis allowed me to identify the mechanisms of cell growth and competition within the
spatial constraints of epithelial tissues. The work presented here can be further extended by
exploring new aspects of cell competition outcomes using lattice free models. In particular, a
lattice free approach would enable the study and analysis of cell/clone shape and cell size
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alterations as it allows for a more realistic representation of cell physical properties. This
in turn, would permit a more detailed analysis of areas of cell contacts, cell movement as
well as types of cell spatial topologies and interactions. These properties may be important
parameters in providing more clear evidence on how cell populations interact, how mutants
spread and how losers are eliminated.

One of the main outcomes of this work is the effects of cell crowding on tissue dynamics
and the need of incorporating feedbacks based on the response to local cell density. As an
off-lattice approach would allow for a more realistic representation of local cell crowding, it
would be therefore an interesting future research direction to study the effects of mechanical
cell competition by quantifying cell density differences and mechanical strain in a lattice free
setting.

The outputs of all the above analyses could provide new testable hypotheses which can
then be combined with new experimental data to infer the role of tissue geometry and spatial
properties of the local environment on growth dynamics.
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SUMMARY

Aging human tissues, such as sun-exposed
epidermis, accumulate a high burden of progenitor
cells that carry oncogenic mutations. However,
most progenitors carrying such mutations colonize
and persist in normal tissue without forming tumors.
Here, we investigated tissue-level constraints on
clonal progenitor behavior by inducing a single-allele
p53 mutation (Trp53R245W; p53*/wt), prevalent in
normal human epidermis and squamous cell carci-
noma, in transgenic mouse epidermis. p53*/wt pro-
genitors initially outcompeted wild-type cells due to
enhanced proliferation, but subsequently reverted
toward normal dynamics and homeostasis. Physio-
logical doses of UV light accelerated short-term
expansion of p53*/wt clones, but their frequency
decreased with protracted irradiation, possibly due
to displacement by UV-induced mutant clones with
higher competitive fitness. These results suggest
multiple mechanisms restrain the proliferation of
p53*/wt progenitors, thereby maintaining epidermal
integrity.

INTRODUCTION

Proliferating human tissues harbor substantial populations of

stem/progenitor cells carrying somatic mutations linked to

neoplasia and other diseases (Alexandrov et al., 2015; Jaiswal

et al., 2017). This process is exemplified by the epidermis, which

is exposed to UV light over decades and accumulates a high pro-

portion of progenitors carrying UV-induced oncogenicmutations

under strong evolutionary selection (Martincorena et al., 2015).

For example, 4%–14%of epidermal cells in sun-exposed human

skin carry non-synonymous mutations of the tumor suppressor

gene p53 (TP53) (Jonason et al., 1996; Martincorena et al.,

2015). Despite this, aging epidermis remains histologically and

functionally normal, and, in comparison with the size of the

mutant progenitor population, the incidence of keratinocyte can-

cers is exceedingly low. Here, we investigate the mechanisms
Cell Stem Cell 23, 687–699, Nove
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that constrain p53mutant progenitors and underpin the remark-

able resilience of the epidermis to mutation.

The epidermis consists of layers of keratinocytes punctuated

by hair follicles and sweat ducts (Alcolea and Jones, 2014).

Keratinocytes are continually shed from the tissue surface and

replaced by proliferation in the basal cell layer (Figure 1A). On

commitment to terminal differentiation, proliferating basal cells

exit the cell cycle and migrate into the suprabasal cell layers.

They then undergo a sequence of changes in gene expression

and cell morphology and are ultimately shed as anucleate corni-

fied cells. Throughout life the epidermis self- renews, matching

cell production in the basal layer with cell loss from the epidermal

surface (Roshan and Jones, 2012).

Various models of normal epidermal homeostasis have been

proposed (Allen and Potten, 1974; Sada et al., 2016). Multiple

lineage tracing and intravital imaging studies suggest the inter-

follicular epidermis (IFE) is maintained by a single population of

progenitor cells with stochastic fate (Clayton et al., 2007; Doupé

et al., 2010; Lim et al., 2013; Rompolas et al., 2016; Roshan et al.,

2016). In this paradigm, progenitor cells divide to generate two

progenitor daughters, two non-dividing differentiating cells or

one cell of each type (Figure 1B). The outcome of individual

progenitor cell divisions is unpredictable, but the probability of

generating differentiated or proliferating cells is balanced. As a

result, the average cell division generates one progenitor and

one differentiating daughter cell across the progenitor popula-

tion, achieving cellular homeostasis and ensuring the majority

of clones with mutations that do not alter cell dynamics are

lost by differentiation and subsequent shedding (Figure 1B)

(Clayton et al., 2007).

Epidermal progenitor fate is adaptable, enabling cells to both

sustain normal cell turnover and respond to injury (Lim et al.,

2013; Park et al., 2017; Roshan et al., 2016). Following wound-

ing, nearby progenitors producemore proliferating than differen-

tiating daughters until the epidermis is repaired, after which they

revert to normal, balanced behavior (Figure 1C). While the ability

to modulate progenitor cell fate provides a robust mechanism of

tissue repair, it also represents a potential vulnerability, as so-

matic mutations may drive progenitors to produce an excess

of proliferating cells in the absence of injury (Alcolea et al.,

2014). Unchecked, even a small bias toward proliferation may

lead to clonal dominance and eventually tumor formation (Frede

et al., 2016).
mber 1, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 687
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(A) Interfollicular epidermis (IFE). The tissue con-

sists of layers of keratinocytes. Proliferation is

confined to the basal cell layer. Differentiating

basal cells exit the cell cycle and then stratify out

of the basal layer, migrating through the supra-

basal and cornified layers to the surface from

which they are shed. In normal IFE, the rate of cell

production in the basal layer (red arrow) is the

same as the rate of cell loss by shedding (blue

arrow).

(B) Single-progenitor model of IFE homeostasis.

All dividing basal cells are functionally equivalent

progenitor cells (pink). On division, a progenitor

may generate two progenitors, two differentiating

progeny that will cease division and stratify (beige)

or one cell of each type. The outcome of a given

division is unpredictable, but the likelihood (r) of

producing two progenitor or two differentiating

daughters is the same, so that, on average, across

the population, equal proportions of progenitor

and differentiating cells are generated (box).

(C) Plasticity of epidermal progenitors. Following

wounding, the progenitors adjacent to the injury

(red bars) switch from homeostatic behavior to

producing more progenitor than differentiating

progeny, until the wound is healed, and then

they revert to homeostasis; numbers indicate

percentages of cells generated per average cell

division in each state.

(D) Distribution of TP53 missense mutations

in cutaneous squamous cell carcinoma (data

from COSMIC v.79, https://cancer.sanger.ac.uk/

cosmic).

(E) Frequency of TP53 Codon 248 amino acid

changes in cutaneous squamous cell carcinoma.

(F) Distribution of TP53 missense mutations in

normal, sun-exposed human epidermis. Data

from Martincorena et al., 2015.

(G) The two modes of generating TP53R248W

codon change from UV-signature mutations.
Here, we focus on a p53 mutant detected in normal human

epidermis, p53R248W (Figures 1D–1G, (https://cancer.sanger.ac.

uk/cosmic/) (Martincorenaet al., 2015). Thismutation is frequently

found in human squamous cell carcinoma and has gain-of-func-

tion (GOF) properties, distinct from those of a p53-null allele

(Muller and Vousden, 2014; Song et al., 2007). p53R248W is a

contact mutant with altered DNA-binding properties and acts in

dominant-negative manner over wild-type p53 when they are

co-expressed (Song et al., 2007). Several studies from cellular

systems and humanized mouse models showed that p53R248W

plays a role in the cancer phenotype through increased prolifera-

tion, drug resistance, migration, and chromosomal instability

(Song et al., 2007; Zhu et al., 2015). However, recent studies

suggest that some p53 mutants including p53R248W exhibit GOF

attributes only in cancer cells of particular lineages and the impact

of thep53R248Wmutationonnormal cell behavior is unclear (Saba-

pathy, 2015). We hypothesized that p53R248W may alter normal

progenitor behavior to increase the likelihood of clonal persis-

tence and the acquisition of additional mutations.

To test this hypothesis, we used a mouse model. Carcinogen-

esis in mouse skin has been studied extensively, and, like hu-
688 Cell Stem Cell 23, 687–699, November 1, 2018
mans, mice may harbor mutated cells long term within normal

epidermis (Berenblum and Shubik, 1949; Zhang et al., 2001).

We developed a transgenic strain to track the fate of individual

epidermal progenitor cells following induction of Trp53R245W,

the murine equivalent of human TP53R248W, in a background of

wild-type cells, and the impact of physiological doses of UV light

on mutant cell behavior.

RESULTS

Wild-Type Progenitor Behavior in Dorsal Epidermis
We began by characterizing the behavior of p53 wild-type

(p53wt/wt) progenitors in dorsal murine IFE labeled with a neutral

genetic reporter by the AhcreERT-inducible cre recombinase

line. A conditional Yellow Fluorescent Protein (YFP) allele

was induced at a low frequency in basal cells of AhcreERT

Rosa26flYFP/wt (R-YFP) mice (Clayton et al., 2007; Kemp et al.,

2004) (Figures S1A, S2A, and S2B). Animals were sacrificed at

different times and the number and location of cells in YFP-ex-

pressing (YFP+) clones determined by confocal imaging (Figures

S2A–S2C) (Clayton et al., 2007; Doupé et al., 2010; Page et al.,

https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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Figure 2. Conditional p53 Mutant Trans-

genic Mouse Model

(A) Schematic illustration of targeting construct.

Trp53 exons 5–11 were flanked by loxP sites (tri-

angle). pA indicates an additional transcriptional

STOP cassette. The engineered Trp53 duplicate

region contains R245W mutations in exon 7, a

C-terminal in-frame self-cleaving T2A peptide and

enhanced GFP (eGFP). The conditional knockin

(cKI) Trp53 allele was obtained after Flp-mediated

deletion of the selection markers. Closed triangle

and gray triangle indicate FRT site and F3 site,

respectively. Prior to induction, the cKI allele

expresses the wild-type Trp53 protein; however,

after cre-mediated recombination, the allele co-

expresses Trp53R245W mutant protein and eGFP.

(B) Genetic lineage tracing in AhcreERT p53*/wt

mice. Cre-mediated recombination, induced by

b-napthoflavone (bNF) and tamoxifen (Tam), re-

sults in expression of themutant protein in place of

the wild-type. The heritable expression of the

mutant protein and GFP reporter allows the study

of competition between mutant clones and the

surrounding wt cells.

See also Figures S4 and S5 and Table S1.
2013). Perifollicular clones adjacent to hair follicle openings were

excluded. The clonal data displayed the quantitative hallmarks of

a single population of progenitors with stochastic fate (Figures

S2D–S2H; STAR Methods) (Clayton et al., 2007; Doupé et al.,

2010; Klein et al., 2007).

To further explore the kinetics of keratinocyte turnover, we

used a transgenic cell proliferation assay based on H2BGFP

dilution over a period of up to 24 weeks (Figures S1B and

S2I) (Doupé et al., 2012; Sada et al., 2016). Keratinocytes

showed a constant and homogeneous dilution pattern in a

timescale of days. These data indicated that cycling keratino-

cytes divided at a similar rate (Figures S2K–S2M; STAR

Methods), arguing that growth arrest and senescence, two of

the stress responses mediated by p53, are rare in wild-type

IFE (Figure S2J) (Muller and Vousden, 2014). Altogether, both

lineage tracing and cell proliferation data were consistent with

dorsal IFE being maintained by a single population of progeni-

tors with balanced stochastic fate (Figures 1B and S3; STAR

Methods).

Inducible p53 R245W/wt Transgenic Mice
To determine whether induction of a heterozygous p53R245W

allele altered progenitor cell behavior, we developed a new

conditional mouse strain, Trp53fl-R245W-GFP/wt (henceforth

referred to as p53*/wt). A conditional allele of p53*, with a GFP

reporter linked to the C terminus of the p53* protein by a T2A

self-cleaving peptide, was targeted to the p53 locus (Figures

2A and S4) (Trichas et al., 2008). This design allowed us to track

individual p53*/wt cells in a p53wt/wt background. We confirmed
Cell Stem
that the p53* protein had properties

similar to those of the human p53R248W

protein and observed perturbation of

p53 targets and differentiation genes in

cultured keratinocytes consistent with
previous reports (Freije et al., 2014; Song et al., 2007; Truong

et al., 2006) (Figures S4 and S5). Following tag cleavage, a

20-amino-acid peptide remained at the C terminus of p53* pro-

tein. To test whether this peptide altered the properties of the

p53* protein, we generated a second conditional mouse strain

with an untagged p53R245W mutant allele. RNA sequencing

(RNA-seq) analysis of recombined primary cultures of p53*/*

and the untagged p53R245W/R245W keratinocytes revealed mini-

mal differences in transcription (Figure S5J; Table S1).

p53*/wt Mutant Progenitor Cells Colonize Wild-Type
Epidermis
To track the fate of p53*/wt progenitors in vivo, we bred

AhcreERTp53*/wt mice and induced recombination in individual

cells in adult mice (2B and Figures 3A). p53*/wt-expressing clones

in IFE whole mounts were imaged by confocal microscopy (Fig-

ures 3B and 3C). In contrast to control R-YFP mice, in which the

area occupied by YFP+ basal cells remained approximately con-

stant after induction, the proportion of p53*/wt basal cells rose

progressively indicating themutant population had a competitive

advantage over their wild-type neighbors (Figures 3D and S2D).

The number of basal cells/clone was consistently higher in

p53*/wt than in YFP+, p53wt/wt clones at the same time point

(p < 0.0001 at 1.5, 3, 6, and 12 weeks, two-tailed Mann-Whitney

test, Figure 3E). By 24 weeks, the p53*/wt clones had expanded

so much that they had fused, but we noted a modest but statis-

tically significant increase in the basal cell density (cells/area,

p = 0.0007 by two-tailed Mann-Whitney test) (Figures 3C, 3D,

and 3F). We concluded that following induction p53*/wt cells
Cell 23, 687–699, November 1, 2018 689
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(B) Rendered confocal z stacks showing typical p53*/wt clones in back skin epidermis. Basal, top-down view of basal layer; projected, top-down view through all
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(C) Rendered z stacks showing basal and top-down views of typical whole mounts at times indicated. Green, GFP; blue, DAPI. Scale bars, 20 mm.

(D) Proportion of labeled basal cells at indicated time points. Averaged value from 4–5 fields per animal, n = 3 animals per time point except n = 4 animals at the

6-week time point. Red lines, mean value. Dotted line indicates the expected growth of p53*/wt basal cells clone area if the rate of expansion is constant.

(E) Clone size distributions (basal cells per clone). Red cross indicates mean clone size. Data are from 3–5mice per time point. For p53*/wt andRYFP, respectively,

n = 50, 93 clones at 1.5 weeks, 75, 106 clones at 3 weeks, 199, 181 clones at 6 weeks and 196, 183 clones at 12 weeks.

(legend continued on next page)
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are dominant over wild-type keratinocytes, leading to coloniza-

tion of the IFE.

Next, we investigated the cellular mechanism(s) that under-

pinned the competitive advantage of p53*/wt progenitors. Height-

ened resistance to the canonical p53 stress responses in the

mutant cells seemed unlikely, as apoptosis was hardly detect-

able (0%–0.5%) and growth arrested/senescent wild-type kera-

tinocytes were not detected in wild-type epidermis (Figure S2J;

Table S2) (Clayton et al., 2007; Doupé et al., 2010). The propor-

tion of mutant and wild-type basal cells staining for 5-ethynyl-20-
deoxyuridine (EdU), amarker of the S phase of the cell cycle, was

similar, arguing that the cell-cycle time and the proportion of pro-

genitors were not substantially altered by the mutation (Fig-

ure 3G). Within the single-progenitor paradigm, a further candi-

date explanation for the competitive advantage of p53*/wt

progenitor cells was a statistical bias in the fate of mutant pro-

genitors, leading to an excess of dividing over differentiating

daughters per average cell division. Such a bias would result in

an increase in the proportion of p53*/wt progenitors in the IFE

at each successive round of cell division, even if the rate of

mutant cell division was the same as that of wild-type cells (Fig-

ure 3H). Quantitative analysis showed that up to 3 months post

induction the observed behavior of p53*/wt clones was indeed

consistent with such a model, with a marked excess of divisions

generating two progenitor daughters over two differentiating

daughters (Figures S6A and S6B; STAR Methods).

Strikingly, beyond 24 weeks post induction, the rate of expan-

sion of the p53*/wt population slowed substantially (Figure 3D).

Yet, EdU data at later time points suggest that this was not

due to a decrease in the cell-division rate (Table S3). This argues

that the cell-fate imbalance of mutant progenitors is not cell

autonomous but responds to changes in the cellular environ-

ment, such as the observed increase in basal cell density

by 24 weeks (Figure 3F) (Miroshnikova et al., 2018; Roshan

et al., 2016). Also, since the proportion of mutant cells

adjacent to wild-type cells will decrease as the area of mutant

epidermis rises, any imbalance in fate driven by competition

between mutant and wild-type will inevitably decline over

time. The lack of long-term clonal level data precluded further

analysis to resolve between these mechanisms. However,

it is clear that the reversion of p53*/wt cell dynamics toward

normal contributed to the ability of normal tissue to tolerate

mutant cells.

p53*/wt Perturbs Keratinocyte Differentiation and
Shedding
Motivated byprevious reports linkingp53with keratinocyte differ-

entiation, we investigated the behavior of differentiating p53*/wt

cells (Freije et al., 2014; Truong et al., 2006). As in wild-type IFE,

mutant cell proliferation was confined to the basal layer (Fig-

ure 4A). 3D imaging of p53*/wt clones revealed that GFP expres-
(F) Mean basal cell density in p53*/wt and RYFP control mice. Data are means of 5

are in corresponding supplementary table, ***p = 0.0007 by Mann-Whitney test.

(G) Average percentage of EdU-labeled basal cells in p53*/wt clones at the 12-week

ns, no significant difference by paired t test.

(H) Schematic illustration of p53*/wt cell behavior. A bias in the fate of p53*/wt cell c

the rate of mutant cell division was the same as that of wild-type cells.

See also Figure S1–S6 and Tables S2 and S7.
sion was restricted to the basal and first suprabasal cell layers.

Thisargued thatmutantp53wasnot transcribedabove the lowest

epidermal cell layers and/or that p53*/wt cells failed to complete

the differentiation program and reach the upper layers of the

epidermis (Figures4Band4C).To resolvebetween thesepossibil-

ities, we generated AhcreERTp53*/wtRosa26Confetti/wt mice car-

rying a conditional multicolor ‘‘Confetti’’ allele targeted to the

Rosa26 locus (Figure 4D) (Snippert et al., 2010). Imagingof clones

expressing both red fluorescent protein and GFPs revealed

p53*/wt cells were indeed capable of terminal differentiation into

cornified layer cells (Figures 4D and 4E).

Defects in keratinocyte differentiation may have a major

impact on epidermal function and promote carcinogenesis,

motivating us to examine the behavior of differentiating mutant

cells more closely (Darido et al., 2016). Over the first 6months af-

ter induction, the area occupied by GFP-expressing mutant

suprabasal cells rose even faster than the area occupied by

mutant basal cells, arguing differentiating mutant cells accumu-

late in the tissue compared with their wild-type counterparts

(Figures 4F and 3D). In keeping with this hypothesis, the thick-

ness of the IFE and the density of cells in the first suprabasal

layer increased substantially associated with changes in cell

morphology, signs of cellular disorganization and extra cell

layer(s) (Figures 4G–4J and S6C).

In order to explore possiblemechanisms that could lead to this

scenario, we implemented computational simulations of the cell-

population dynamics and tissue structure under various hypoth-

eses incorporating parameters measured from the epidermis

(STAR Methods). Briefly, we considered changes in either the

proportion of symmetric divisions, stratification rate, or shedding

rate along with the extent of cell-fate imbalance. Predicted

changes in the proportion of p53*/wt cells in basal/suprabasal

layers and tissue thicknesswere compared against experimental

observations. Only p53*/wt progenitor cell-fate imbalance

accompanied by a substantial reduction in the shedding rate

was able to reproduce the patterns seen, arguing this was the

most likely explanation (Figure S6D; STAR Methods). Strikingly,

however, beyond 6 months, the area occupied by mutant supra-

basal cells remained approximately constant while epidermal

thickness decreased, arguing that mutant cell differentiation

and shedding had been at least partially restored. This slow

adaptation of mutant differentiating cell dynamics resulted in

the preservation of tissue integrity without the development of

epidermal tumors (Table S4).

The mismatch between the proportion of mutant basal and

suprabasal cells has implications for cell movement within the

epidermis. In normal IFE, the majority of differentiating cells

stratify vertically through the suprabasal cell layers (Figure 5A)

(Doupé et al., 2010; Rompolas et al., 2016). In contrast, in

p53*/wt IFE, most mutant suprabasal cells overlie wild-type basal

cells, indicating extensive lateral displacement has occurred
fields per mouse. nR 4 mice at each time point/group. Exact sample numbers

time point compared to non-labeled cells (p53wt/wt) in samemouse. n = 3mice.

an result in an increase in the proportion of p53*/wt progenitors in the IFE, even if
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(A) Rendered confocal z stacks showing p53*/wt clone area. Lateral view shows the section of projected image (red line). White line, basement membrane; blue,

DAPI; green, GFP; red, EdU. Scale bars, 20 mm.

(legend continued on next page)
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(Figure 5A). We hypothesized that there may be alterations in

cell-cell adhesion permissive of lateral migration in mutant IFE.

Transmission electron microscopy of p53*/wt IFE at a year post

induction revealed widespread disruption of desmosomes (Fig-

ures 5B and 5C) (Dusek and Attardi, 2011). Expression of the

desmosomal proteins, DSG3 and CDH1, and levels of mem-

brane-associated CTNNB1, which bindsCDH1, were diminished

in p53*/wt compared with adjacent wild-type areas (Figure 5D).

Despite these changes, the p53*/wt epidermis retained its

‘‘outside-in’’ barrier function (Figures 5E and 5F). We concluded

that the lateral migration of p53*/wt suprabasal cells may be facil-

itated by the disruption of desmosomes.

Low-Dose UV Light Exposure Drives Mutant Clone
Expansion
Human epidermis is frequently exposed to low doses of UV light,

below the level that causes keratinocyte apoptosis and sunburn

(Jonason et al., 1996). As well as generating new mutations,

repeated low doses of UV have been argued to drive the expan-

sion of clones carrying p53 protein stabilizing mutations (Klein

et al., 2010). We therefore investigated the effect of such physi-

ological exposure.

First, we examined the impact of a short course of a low

level UV-B (sub minimal erythema dose, MED, wavelengths

280–315 nm) treatment on p53wt/wt and p53*/wt progenitors

in vivo. The UV dose was titrated to induce detectable DNA dam-

age with minimal change in apoptosis (Figures S7A and S7B;

Table S5). An area of shaved dorsal epidermis was exposed to

daily doses of UV for 4 days per week. After 2 weeks, cre was

induced and samples collected from irradiated and adjacent

unexposed epidermis for up to 6 weeks (Figures 6A and 6B). In

wild-type p53, R-YFP mice, the proportion of EdU+ basal cells

and the mean number of cells per clone were increased in

irradiated compared to unexposed epidermis, consistent with

UV treatment accelerating the rate of cell division (Figures 6C,

S7C, and S7D). However, the area of labeled epidermis re-

mained approximately constant despite the increased rate

of epidermal turnover (Figure 6E). We concluded that the pro-

genitor population continued to maintain the epidermis with
(B) Side view of p53*/wt clone at the 12-week time point. White line, basement mem

cells. Green, GFP; blue, DAPI; white, F-actin. Scale bar, 20 mm, arrowheads, bas

(C) Schematic: typical p53*/wt clone with GFP expression (green) confined to bas

(D) Multicolor lineage tracing in AhcreERTRosa26flConfetti/wtp53*/wt animals. Left: th

cre-mediated inversion and excision recombination events result in the heritable e

fluorescent protein (YFP) red fluorescent protein (RFP), ormembrane cyan fluoresc

labeled clones even if the p53 locus becomes inactive in the differentiating prog

12 weeks post induction of AhcreERTRosa26Confettip53*/wt mice. Images represen

(E) Schematic: RFP expression reveals differentiation of p53*/wt clone.

(F) Projected area of labeled epidermis (%) in induced p53*/wt (open green circles)

n = 3–5 mice per time point/group. Red and blue lines, mean area for p53*/wt and

(G) Mean cell density in immediate suprabasal layer. Data are means of 5 fields pe

shown for YFP. *p = 0.0236, **p = 0.0035 by two-tailed unpaired t test.

(H) Single z-slice image of immediate suprabasal layer from p53*/wtmice at indicat

Scale bar, 20 mm.

(I) Rendered confocal z stacks showing side view of epidermal whole mounts. Y

F-actin. Scale bar, 20 mm. White line, basement membrane; yellow line, epiderm

(J) Detail analysis of change in epidermal thickness. Top, confocal images (side vie

in first suprabasal layer; asterisks, each cell layers. Arrowhead indicates cell in b

points indicated. n R 3 mice at each time point/group. *p = 0.016, **p = 0.0043

See also Figure S6 and Table S2–S4 and S7.
balanced production of progenitor and differentiating keratino-

cytes during low-dose UV irradiation.

In induced p53*/wt animals, UV treatment greatly accelerated

IFE colonization by mutant cells (Figures 6B and 6F). However,

the proportion of proliferating EdU+ p53*/wt basal cells in irradi-

ated IFE was similar to that in irradiated wild-type cells (Figures

6C and 6D). As in the unexposed epidermis, these observations

indicate the fate of p53*/wt progenitors is biased toward prolifer-

ation. Accelerated turnover along with a fate imbalance is pre-

dicted to lead to a faster p53*/wt colonization (Figure 6G; STAR

Methods).

In humans, low-dose UV exposure continues over decades

and results in a dense patchwork of epidermal clones carrying

mutations in p53 and other genes (Martincorena et al., 2015).

To model this scenario, p53*/wt mice were induced and the skin

given a single treatment with the mutagen dimethylbenzanthra-

cene (DMBA) to load the epidermis with mutations (Abel et al.,

2009). Dorsal epidermis was then treated with sub MED UV for

up to 9 months, and exposed and adjacent unexposed areas

compared (Figure 7A). Over the first 12 weeks the area occupied

by GFP-labeled p53*/wt cells expanded significantly faster in the

presence of UV light, as shown above (Figures 7B and 7C). How-

ever, continuing exposure resulted in a progressive decline in the

p53*/wt population (Figures 7B–7D).

Given the short-term effect of UV treatment, the depletion of

p53*/wt cells during long-term exposure was surprising. Several

different scenarios can be envisaged to explain this observation.

First, it might result from a non-cell-autonomous adaptation to a

local tissue stress, e.g., such as sensitivity to increased cell den-

sity, which would also explain the restraining of p53*/wt expan-

sion in non-irradiated epidermis. Alternatively, cell-autonomous

factors, such as long-term UV-induced accumulation of cellular

damage in p53*/wt cells or an adaptive increase in wild-type

cell fitness may cause a decline in mutant competitiveness.

Another possibility is competition between p53*/wt cells and mu-

tations caused by the DMBA treatment or UV irradiation. In the

last scenario, UV exposure generates new mutations with a

range of possible effects on competitive fitness of mutant pro-

genitors. Initially, p53*/wt cells encounter mostly wild-type cells
brane; yellow line, epidermal surface; green line, outer limit of GFP-expressing

al layer cells.

al and first suprabasal cell layers.

e multicolor confetti reporter allele encodes four fluorescent proteins. Different

xpression of one of the four fluorescent proteins depicted, nuclear GFP, yellow

ent protein (CFP). The fate of p53mutant progenitors can be tracked in double-

eny. Right: rendered z stacks of typical Confetti-p53*/wt double-labeled clone

tative of 8 clones. Yellow arrowhead, cornified cell. Scale bars, 20 mm.

and p53wt/wt RYFP (solid black circles) mice. Data are from 5 fields per animal.

p53wt/wt RYFP, respectively.

r mouse. n = 3 mice at each time point/group except 4 fields from 1 animal are

ed time point. Schematic: typical p53*/wt colonized area at indicated time point.

ellow bars indicate the thickness of epidermis. Green, GFP; blue, DAPI; white,

al surface.

w) showing changes in p53*/wt epidermis over time. Yellow bars, length of cells

etween layers. Scale bar, 20 mm. Bottom, mean thickness of epidermis at time

by Mann-Whitney test.
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over which they are dominant, resulting in progressive expansion

of the p53*/wt population. However, as the experiment proceeds,

DMBA- or UV-induced mutant clones fitter than wild-type cells

will expand and eventually collide with each other and with

p53*/wt cells. At this point, the less-fit cells would be displaced

from the tissue (Figure 7E). Simple simulations embodying this

hypothesis suggest such competition as a possible explanation

for the observed changes in the p53*/wt population (Figures 7F

and S7E; STARMethods; Video S1). Hence, long-term UV expo-

sure may contribute to the decrease in the p53*/wt population

both by inducing mutations that allow cells to out-compete

p53*/wt and by providing an environment in which other muta-

tions have an advantage over p53*/wt.

The cell-competition hypothesis in particular makes several

testable predictions. If competition is responsible for the deple-

tion of p53*/wt cells after 36 weeks, we would expect that clones

carrying protein-altering mutations (possibly with the UV muta-

tional signature) would be present in exposed epidermis and

that the number and size of such clones would increase from

12 to 36 weeks of UV treatment. To test this, we used ultra-

deep targeted exome sequencing on a panel of 74 genes linked

with murine squamous carcinogenesis. Both induced and

non-induced mice were included to check that the observed

mutations were not merely passenger mutations within p53*/wt

clones.

While nomutations were detected in epidermis exposed to UV

for 12 weeks, we identified 58mutations in epidermis exposed to

UV for 36 weeks compared with 8 in adjacent unexposed skin

in 7 mice (p = 0.02, 2-tailed Mann-Whitney test) (Figures 7G

and S7F; Table S6). These mutant calls correspond with very

large clones as the lower limit of detection was �0.15 mm2 in

area. The mutations were largely C > T nucleotide changes,

consistent with the UV-light mutational signature, and the major-

ity of mutations were non-synonymous, making it feasible for

some of them to have altered cellular competitive fitness (Figures

S7G and S7H).We noted recurrent cancer-associatedmutations

in Trp53, finding R270Cmutants in UV-exposed epidermis in 4/7

mice after 36 weeks UV. Themutations found in the non-induced

samples show that the expansion of newmutations does not rely

on hitch-hiking within p53*/wt clones. Taken together, these ob-

servations are consistent with clones carrying UV- or DMBA-

induced mutations displacing p53*/wt cells during prolonged

UV exposure. In contrast, in the adjacent unexposed areas

of the skin, the expansion of the p53*/wt population was not

impeded by competition (Figures 7B and 7C).

A further prediction of the cell-competition hypothesis is that

transgenic and UV-induced mutant clones must ultimately
(B) Transmission electron microscopy of induced p53*/wt and uninduced p53wt/w

(C) Intercellular distance (yellow capped bar) at desmosomes in p53wt/wt (black) a

percentiles (box) and 5th and 95th percentiles (whiskers), dots are outliers (dots). n

by Mann-Whitney test.

(D) Bottom-up view of rendered confocal z stacks showing the expression of cell a

3 mice per genotype. White, DSG3; red, CTNNB1 (left panels), CDH1 (right pane

(E) Scheme of epidermal permeability barrier function assay.

(F) Cryosections of p53*/wt epidermis showing normal expression of markers and b

time point and GFP (green) indicates the expression of p53* transcript. Lucifer ye

control, barrier was removed by tape stripping. Yellow, lucifer yellow; blue, DAPI.

Scale bar, 20 mm.

See also Table S7.
collide. One way to visualize such events is to immuno-stain

for p53. This reveals cells carrying UV-induced, protein-stabiliz-

ing mutations, such as Trp53R270C, but does not detect the low

levels of wild-type p53 or mutations that do not stabilize the

protein including p53* (Figure S5H) (Jonason et al., 1996). We

observed an increase in the areas covered by p53 immuno-

positive cells from 12 to 36 weeks under UV exposure but

barely detected any in adjacent un-irradiated epidermis at

36 weeks (Figures 7B and 7H). In several cases, these cells

were in direct contact with p53*/wt regions, infiltrating under-

neath differentiating edges of p53*/wt clones (Figure 7H). We

concluded that cells carrying protein-stabilizing mutations in

p53 do indeed collide with p53*/wt cells during prolonged UV

exposure.

Altogether, these results suggest that, in addition to the

phenotypic adaptation observed in the non-irradiated experi-

ments, competition betweenmutant clonesmay be an important

factor in constraining p53mutant clone expansion in the evolving

mutational landscape of normal epidermis

DISCUSSION

Here, we show that the phenotype of epidermal progenitor cells

carrying a heterozygous p53 gain-of-function mutation adapts

to alterations in the cellular environment. In mice protected

from UV light, p53* confers a strong competitive advantage

over wild-type progenitor cells, as the average mutant cell divi-

sion generates more dividing than differentiating progeny. In

addition, retardation of terminal differentiation and shedding

leads to mutant cell accumulation in the suprabasal layers. Un-

checked, the combination of progenitor cell fate favoring prolif-

eration and a decrease in cell shedding would be sufficient to

generate tumors (Frede et al., 2016). However, the progressive

attenuation of the mutant phenotype enables the epidermis

to retain its functional integrity despite a high burden of p53

mutant cells.

The mechanisms underpinning the adaptation of p53*/wt cells

remain to be determined. The slowing of expansion of the

p53*/wt basal cell population beyond 6 months post induction

is accompanied by crowding of cells in the basal layer. A similar

phenomenon has been observed in ‘‘imprisoned’’ UV-induced

p53 mutant clones and Notch mutant keratinocytes (Alcolea

et al., 2014; Zhang et al., 2001). Keratinocyte differentiation is

sensitive to mechanical forces suggesting that basal cell

crowding may promote a return toward cellular homeostasis

(Le et al., 2016; Roshan et al., 2016). New technologies will

be required to determine the possible role of feedback effects
t IFE. Arrows indicate desmosomes. Scale bar, 200 nm.

nd p53*/wt (green) IFE. Box plots show median (line across box), 25th and 75th

= 150 desmosomes from 3 animals per group. Scale bar, 200 nm. ****p < 0.0001

dhesion molecules in p53*/wt and p53wt/wt IFE. Images are representative from

ls); green, GFP; blue, DAPI. Green line, p53*/wt clone area. Scale bar, 20 mm.

arrier function compared to that of p53wt/wt. p53*/wt colonized over 70% at this

llow is excluded by a normal competent epidermal surface barrier; in the assay

FLG, filaggrin; LOR, loricrin; ITGA6, integrin a6; K10, keratin 10; K14, keratin 14.
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Figure 6. Short-Term Low-Dose UV Expo-

sure Accelerates p53*/wt Colonization

(A) Protocol: AhcreERT-p53*/wt or -RYFP mice

were exposed to a sub-erythema dose of UVB

daily, 4 days per week for 2 weeks (red lines), after

which labeling was induced (green arrow) and UV

exposure continued; sample collection is indicated

by blue arrows.

(B) Rendered confocal z stacks showing repre-

sentative clones in epidermal wholemounts. Green

indicates YFP in YFP panels and GFP in p53*/wt

panels; blue, DAPI. Scale bars, 20 mm. Basal, im-

mediate suprabasal cells and basement mem-

brane are indicated by closed and open arrows

and dotted line, respectively.

(C and D) Average percentage of EdU-labeled

basal cells at the 6-week time point in induced

AhcreERT-p53*/wt (D) or AhcreERT-RYFP (C) IFE.

Samples were taken from UV-irradiated (purple

circles) or adjacent unexposed areas (ctl, black

circles). Values are mean from 5 fields per mouse.

Red line indicates mean. n = 4 mice per condition.

*p < 0.05 by paired t test. Percentage EdU in

UV-irradiated epidermis in (D) was quantified in

p53*/wt clone area.

(E and F) Projected area of labeled UV irradiated

and adjacent unirradiated IFE. Values are per-

centage from 6 fields. n = 4 mice per time point. (E)

RYFP (purple, UV; black, unirradiated). (F) p53*/wt

(purple, UV; green, unirradiated).

(G) Schematic illustration of the effect of UV on

clone behavior. UV increases the rate of cell divi-

sion in both p53wt/wt and p53*/wt cells but accel-

erates IFE colonization by mutant cells as p53*/wt

progenitors retain a bias in fate, generating more

progenitor than differentiating daughters.

See also Figure S7 and Tables S5 and S7.
from suprabasal cell crowding on epidermal proliferation and

tissue turnover.

A persistent legacy of p53*/wt mutation is the loss of desmo-

somes and downregulation of expression of CDH1 and other

adhesion proteins, consistent with the observation that the

human p53R248W mutant represses the expression of CDH1

in vitro (Dusek and Attardi, 2011; Wang et al., 2009). However,

within the mixed population of mutant and wild-type cells the

tissue does not exhibit a barrier or fragility defect.

In non-UV-exposed epidermis, the early competitive domi-

nance of the p53*/wt mutant is explicable in terms of cell-auton-

omous effects on progenitors. The short-term effects of low-
696 Cell Stem Cell 23, 687–699, November 1, 2018
dose UV light exposure may also be ex-

plained within this paradigm. UV irradia-

tion increases the rate of cell division of

both wild-type and mutant progenitors,

but the imbalance of cell fate in mutant

cells remains. The result is a substantial

acceleration of epidermal colonization by

p53*/wt cells.

DMBA/UV exposure leads to a com-

plex and heterogeneous mutational land-

scape. After long-term UV exposure, the

p53*/wt population declines but is not
entirely displaced. We hypothesize that individual clone fates

would then depend on the chance acquisition of additional mu-

tations and the competitive fitness of neighboringmutant clones.

It remains to be seen whether competitive interactions promote,

inhibit, or are neutral in carcinogenesis. Properties that allow a

particular mutant to survive in early clonal competition could

differ from those required for outgrowth of neoplastic cell popu-

lation (Aktipis et al., 2013). The stepwise acquisition of further

mutations may then be key for breaking these evolutionary bot-

tlenecks (Nowell, 1976).

This study argues that the patchwork of clones carrying

oncogenic mutations in sun-exposed human epidermis is
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Figure 7. Long-TermUV Exposure Depletes

Epidermis of p53*/wt Cells

(A) Protocol: AhcreERT-p53*/wt mice were induced

(green arrow), treated with a single dose of dime-

thylbenzanthracine (DMBA, black arrow), followed

by repetitive sub-minimal erythema doses of UVB

(red bars); blue arrows indicate sampling.

(B) Confocal z stacks showing projected views of

UV-irradiated and an adjacent unexposed area of

IFE. Blue, DAPI; green, GFP, reporting p53* tran-

scription; red, p53 indicating a p53 protein-stabi-

lizing mutation. Scale bar, 20 mm.

(C) Labeled projected area of p53*/wt IFE in UV-

exposed (purple circles; red line indicates mean

value) and adjacent unexposed areas (green cir-

cles; red lines indicate mean value). n = 3 at the

12-week time point and n = 5 at the 28- to 36-week

time point. Comparison between different time

points, within same animal (unexposed versus

UV irradiate area), **p = 0.0046, *p = 0.036 by

unpaired two-tailed t test, **p = 0.0071 by paired

t test.

(D) Proportion of labeled basal cells in UV-irradi-

ated IFE at indicated time points. Values are mean

percentage from 5–8 fields per animal. n = 3 mice

per time point. Red bars, mean value. *p = 0.042

by unpaired two-tailed t test.

(E) Hypothesis: effect of prolonged low-dose UV

on p53*/wt clonal dynamics. Following induction,

in the absence of UV, p53*/wt clones (green)

expand progressively in a background of wild-type

cells (beige). In UV-exposed IFE, a wide variety

of different mutant clones arises, indicated by

multiple colors, some of which may expand,

outcompete, and displace p53*/wt cells from

the IFE.

(F) Simulation of clone competition under ongoing

mutagenesis (see Video S1). A transgenic mutant

(green) is induced at 1% frequency in a back-

ground of wild-type cells (yellow). Subsequently,

new mutations (red cross, shades of green if in

transgenic cells, other colors if in wild-type cells)

are induced at random and assigned a fitness

value as described in STAR Methods.

(G) The number of mutations detected per square

millimeter by the Shearwater algorithm in each

16-mm2 biopsy ofmouse back skin: 3 induced and

2 non-induced mice at 12 weeks, 4 induced and

3 non-inducedmice at 36 weeks. Solid circles, non-induced samples; open circles, induced samples. Green, non-exposed skin; purple, UV irradiated. **p < 0.01,

*p = 0.02 by two-tailed Mann-Whitney test. Note that this method does not detect the induced and uninduced p53* allele.

(H) Confocal z stacks showing p53*/wt clone in direct contact with p53-immunopositive clone in UV-irradiated area (36 weeks post-induction). Blue, DAPI; green,

GFP; red, p53. Scale bar, 20 mm. Dashed lines indicate outline of clones in top-down image and basement membrane in lateral view. Graph on the right shows

proportion of p53 immunopositive area in UV-irradiated skin. Measurement of 8 fields of view per mouse are plotted individually. n = 3 mice per time point. Red

lines indicate mean values. ****p < 0.0001 by two-tailed Mann-Whitney test.

See also Figure S7 and Tables S6 and S7.
shaped by both phenotypic adaptation and cell competition.

Understanding how mutant progenitor clones interact is key to

understanding not only epidermal physiology, but also the

formulation of rational approaches to prevent malignant

transformation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Caspase 3 (CAS3) Abcam Cat# ab44976; PRID: AB_868674

Caspase 3 (CAS3) Abcam Cat# ab2302; PRID: AB_302962

Green fluorescent Life technologies Cat# A10262; PRID: AB_2534023

Cyclo Butane prymidine CosmoBio Cat# NMDND001; PRID: AB_1962813

p53 (CM5) Vector Laboratories Cat# VP-P956; PRID: AB_2335917

p53 (Pab1801) Abcam Cat# ab26; PRID: AB_303198

Phospho Serine 392 p53 Millipore Cat# 04-244; PRID: AB_1587353

Phospho Serine 15 p53 Cell signaling Cat# 9284; PRID: AB_331464

Acetyl Lysine 379 p53 Cell signaling Cat# 2570; RRID:AB_823591

Loricrin Covance Cat# PRB-145P; PRID: AB_292095

Filaggrin Covance Cat# PRB-417P; PRID: AB_291632

Cytokeratin 14 Covance Cat# PRB-155P; PRID: AB_292096

Cytokeration 10 Abcam Cat# ab 76318; PRID: AB_1523465

Tubulin b2 Abcam Cat# ab151318

Mouse double minute 2 Abcam Cat# ab16895; PRID: AB_2143534

CD45 Biolegends Cat# 103102; RRID:AB_312967

E-cadherin (CDH1) Cell signaling Cat# 3195; PRID: AB_10694492

Desmoglein 3 (DSG3) Santa Cruz Biotechnology Cat# sc-23912; RRID:AB_627422

Beta Catenin (CTNNB1) Cell signaling Cat# 9562; PRID: AB_331149

Phalloidin Life technologies Cat# A22287; PRID: AB_2620155

Lrig1 R&D systems Cat# AF3688; RRID:AB_2138836

Alexa Fluor 647 anti-human/mouse CD49f BioLegend Cat# 313610; PRID:AB_493637

Bacterial and Virus Strains

Adeno-cre Vector Laboratories Cat# 1045

Chemicals, Peptides, and Recombinant Proteins

b-napthoflavone MP Biomedicals Cat# 156738

Tamoxifen Sigma Cat# N3633

Doxycycline Sigma Cat# D9891

Fish Skin gelatin Sigma Aldrich Cat# G7765

Bovine Serum Albumin Merk MIllipore Cat# 126575

Donkey serum Sigma Aldrich Cat# D9633

Goat serum Sigma Aldrich Cat# G9023

Lucifer yellow Sigma Cat# L0259

Keratinocyte Serum Free media Invitrogen Cat# 10744018

Epidermal growth factor GIBCO Cat# 10450-013

Bovine pituitary extract GIBCO Cat# 13028-014

Polybrene Sigma Cat# H9268

0.25% trypsin Sigma Cat# T4424

HEPES GIBCO Cat# 15630080

HBSS GIBCO Cat#14175-053

Eagle’s Minimum Essential Medium Lonza Cat# LZBE06-174G

SimplyBlue Coomassie G-250 Thermo Scientific Cat# LC6060

Protease and Phosphatase inhibitor Thermo Scientific Cat# 78415

10% Tris-HCl acrylamide gel Bio-Rad Cat# 161-155

Fibronectin BD Cat# 356008

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Collagen Type I BD Cat# 354236

40, 6-diamidino-2-phenylindole (DAPI) Sigma Cat# D9542

Critical Commercial Assays

Click-iTEdU imaging Life technologies Cat# C10086

Pierce TM Crosslink Magnetic IP/Co-IP kit Thermo Scientific Cat# 88805

RNeasy Mini kit QIAGEN Cat# 74106

Quantitect Reverse Transcription kit QIAGEN Cat# 205310

TaqMan Universal PCR Master Mix Life technologies Cat# 4304437

Lipofectamine 2000 Thermo Fisher Cat# 11668-019

QuickSTART Bradford Dye reagents BioRAD Cat# 500-0202

Immobilon Western Chemiluminescent HRP substrate Millipore Cat# WBLUC0500

SuperSignal West Femto Chemiluminescent Thermo Scientific Cat# 34095

SimplyBlue Coomassie G-250 stain Thermo Scientific Cat# LC6060

PfuUltra II Fusion HS DNA polymerase Agilent technologies Cat# 600672

PCR purification kit QIAGEN Cat# 28106

Rapid DNA ligation kit Roche Cat# 11635379001

DNA MiniPrep kit QIAGEN Cat# 27106

Maxi Prep Endotoxin free kit QIAGEN Cat# 12362

Pierce TM Crosslink Magnetic immunoprecipitation

(IP)/Co-IP kit

Thermo Scientific Cat# 88805

QIAamp DNA Micro Kit QIAGEN Cat# 56304

Deposited Data

RNaseq data: p53wt/wt This paper ENA: ERS1755594, ERS1755602,

ERS1755610, ERS1755618

RNaseq data: p53*/wt This paper ENA: ERS1755595, ERS1755603,

ERS1755611, ERS1755619

RNaseq data: p53*/* This paper ENA: ERS1755596, ERS1755604,

ERS1755612, ERS1755620

RNaseq data: p53R245W/R245W (untagged) This paper ENA: ERS1755597, ERS1755605,

ERS1755613, ERS1755621

Ultra-deep targeted DNA sequencing data This paper ENA: ERP023080

Experimental Models: Cell Lines

Mouse embryonic fibroblast Laboratory of Ashok

Venkitaraman

PMID:15607980

Human derived amphotrophic phoenix cell ATCC ATCC CRL-3213

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: Trp53flR245W/flR245W This paper N/A

Mouse: AhcreERT Kemp et al., 2004

Mouse: AhcreERTTrp53flR245W/wt This paper N/A

Mouse: AhcreERTR26flconfetti/wtTrp53flR245W/wt This paper N/A

Mouse: AhcreERTRosa26flYFP/wt Clayton et al., 2007 N/A

Mouse: R26M2rTATETO-GFP Doupé et al., 2012 N/A

Oligonucleotides

Taqman assay Mdm2 Life technologies Mm01233136_m1

Taqman assay Tubb2b Life technologies Mm01620966_s1

Recombinant DNA

pBabe puro IRES-EGFP addgene Cat# 14430

pBabe puro IRES-EGFP p53 This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pBabe puro IRES-EGFP p53R245W This paper N/A

pBabe puro IRES-EGFP p53R245W-T2A This paper N/A

pBabe puro IRES-EGFP p53S389A This paper N/A

Software and Algorithms

LAS X Leica N/A

Volocity 6 and 6.3 Perkin Elmer N/A

AxioVision Zeiss N/A

Tecnai User Interface FEI N/A

GraphPad Prism 6 N/A

STAR 2.5.3a Dobin et al., 2013 N/A

HTSeq framework version 0.6.1p1 Anders et al., 2015 N/A

R package: DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

R package: pheatmap R Kolde, R package version 61’ https://cran.r-project.org/web/packages/

pheatmap/index.html

R package: RColorBrewer ColorBrewer palettes E Neuwirth,

RC Brewer - R package version,

2014 - auckland.ac.nz

https://cran.r-project.org/web/packages/

RColorBrewer/index.html

R package: clusterProfiler Yu et al., 2012 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

R package: org.Mm.eg.db Carlson M (2018). org.Mm.eg.db:

Genome wide annotation for Mouse.

R package version 3.6.0

http://bioconductor.org/packages/release/

data/annotation/html/org.Mm.eg.db.html

BWA-MEM (v0.7.15) Li, 2013

Shearwater Gerstung et al., 2014 https://bioconductor.org/packages/release/

bioc/html/deepSNV.html

Ensembl Variant Effect Predictor (Version 84) McLaren et al., 2016 N/A

MATLAB R2016b MathWorks N/A

Jupyter & Spyder 3.1 (Python 3) Python Software Foundation N/A

Other

Leica TCS SP5 II and SP8 Leica N/A

120kV FEI Spirit Biotwin FEI N/A

StepOne Plus Real-Time PCR system Life technologies N/A

UV irradiater UV-2 Tyler research Corporation N/A

UV-irradiator CL-508M Uvitec N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Request for reagent and resource sharing should be addressed to the Lead Contact, Philip H Jones (pj3@sanger.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice strains and induction of allele
All experiments were conducted according to UK government Home Office project licenses PPL22/2282 and PPL70/7543. Animals

were maintained at specific and opportunistic pathogen free health status and were immune competent. No animals were involved in

previous experiments and were drug naive prior to the start of experiments. Adult mice 12 weeks or more weeks in age were used for

in vivo experiments. Animals were maintained on a C57/Bl6 genetic background, housed in individually ventilated cages and fed on

standard chow. Both male and female animals were used for experiments.

Trp53flR245W-GFP/wt knock-in micewere generated by TaconicArtemisGMBH,Germany. In the targeting vector, exons 5 to 11 of the

wild-type Trp53 gene were flanked by loxP sites and an additional transcriptional STOP cassette inserted between the Trp53

30untranslated region (UTR) and the distal loxP site, in order to prevent transcriptional read through to downstream exons (Figure 2A).

A second Trp53 genomic region from exon 5 to exon 11, including the splice acceptor site of intron 4 was introduced 30 of the distal
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LoxP site. This duplicated region included a Trp53R245W mutation introduced into exon 7 and a cassette including a glycine-serine-

glycine flexible linker, a self-cleaving T2A peptide and the eGFP coding sequences inserted into exon 11, between the last codon of

Trp53 and the translation termination codon. Two positive selection markers were also introduced. A Neomycin resistance gene

flanked by Frt sites was inserted 30 of the 50 LoxP site in exon 4, downstream of the predicted transcriptional initiation site. A Puro-

mycin resistance gene flanked by F3 sites was placed downstream of the 30UTR from the duplicated region. The targeting vector

was generated using BAC clones from the C57BL/6J RPCIB-731 BAC library and was fully sequenced. After transfection into the

C57BL/6NTac embryonic stem cell line, clones that had undergone homologous recombination were selected using puromycin

and neomycin and screened by Southern blotting.

The conditional Trp53 strain was generated by Flp-mediated deletion of the selection markers. Prior to cre-mediated recombina-

tion these animals (p53*/wt) express TRP53 protein from two wild-type alleles. Once the wild-type Trp53 genomic region is deleted by

cre both the Trp53 mutant carrying the R245W mutation and the eGFP reporter are transcribed.

For lineage tracing of control, Trp53 wild-type progenitors, the Rosa26flYFP/wt (R-YFP) mice which express yellow fluorescent pro-

tein (YFP) from the constitutively active Rosa 26 locus were used (Srinivas et al., 2001).

To assess the differentiation capacity of p53*/wt mutant clones, homozygous AhcreERTR26flConfetti animals were crossed onto

p53*/*to create AhcreERTR26flConfetti/wtp53*/wt animals (Snippert et al., 2010). Following induction this strain yields cells expressing

one of 4 colors of reporter from the Rosa26 locus and the GFP reporter of p53 transcription. Cells doubly positive for red fluorescent

protein and GFP were scored in experiments.

Each reporter line was crossed onto the AhcreERT line in which transcription from a transgenic CYP1A1 (arylhydrocarbon

receptor, Ah) promoter is normally tightly repressed (Kemp et al., 2004). Following treatment with the non-genotoxic xenobiotic

b-napthoflavone the Ah promoter is induced and a cre recombinase- mutant estrogen receptor fusion protein (creERT) is expressed.

In the presence of tamoxifen, the creERT protein enters the nucleus to mediate recombination.

For lineage tracing experiments, the relevant floxed reporter line was crossed onto the AhcreERT strain. Doubly transgenic male

and female animals were induced by a single interaperitoneal (i.p) injection of 80 mg/kg b-napthoflavone and 1 mg tamoxifen at

11-16 weeks of age. GFP and YFP expressing clones were visualized by immunostaining with an anti-GFP antibody.

To estimate the rate of epidermal cell division a transgenic proliferation assay was used (Doupé et al., 2012). Mice doubly trans-

genic for the reverse tetracycline-controlled transactivator (rtTA-M2) targeted to the Rosa26 locus and a HIST1H2BJ-EGFP fusion

protein (HGFP) expressed from a tetracycline promoter element were treated with doxycycline (DOX, 2 mg ml-1 in drinking water

sweetened with sucrose) for 4 weeks. DOX was then withdrawn and animals were culled at different time points to track HGFP

dilution.

To determine the proportion of proliferating cells, 100 mg of 5-ethynyl-20-deoxyuridine (EdU) (Life technologies) was injected intra-

peritoneally 1 h before culling animals.

Primary culture and in vitro induction of allele
Primarymouse keratinocytes were isolated directly from tail epidermis of 4-12 week-oldmale and femaleC57/BL6wild-type, p53*/wt,

and p53*/* mice and cultured in Keratinocyte Serum Free media (KSFM, Life technologies) supplemented with 1mg/ml Epidermal

growth factor, 45 mg/ml Bovine pituitary extract, 20 mM HEPES-NaOH pH7.2-7.5, 1% Penicillin-Streptomycin and CaCl2 to give a

final Ca2+ concentration of 0.02 mM for growth media (GM) and 0.6 mM for differentiation media (DM).

Cre-mediated recombination was carried out in vitro using an adenovirus carrying Cre recombinase (Adeno-cre, Vector Labora-

tories cat.no. 1045). When primary cultures reached 50%–60% confluency, cells were incubated with Adeno-cre at 2x106 pfu/ml in

GM for 18 hours at 37�C. Virus was then removed by washing in Hank’s Balanced Salt Solution (HBSS, Life technologies) three times.

Cells maintained in GM for another 24 hours prior to use in experiments.

METHOD DETAILS

Ultraviolet (UV) irradiation
A UV irradiator UV-2 from Tyler Research Corporation was used for this study. During irradiation, animals were placed in a custom-

made restrainer that restricted exposure to part of the dorsal skin. The dose of UVB-irradiation was titrated in wild-type C57BL/6

mice. A sub minimal erythema dose of UVB (750J/m2) was determined from the appearance of the skin, Cyclobutane Pyrimidine

staining and level of cleaved Caspase 3. AhcreERT-R-YFP and AhcreERT-p53*/wt mice were lightly shaved on the back with electric

shaver 3 days prior to the start of irradiation course, then exposed to sub MED UVB daily, 4 times a week, and shaved once a

week. The irradiance was monitored by dosimeter every day. For short term treatment, mice were induced with b-napthoflavone

and tamoxifen after 2 weeks of irradiation and irradiation continued as before. Animals were culled at intervals as described in

the text.

UV-irradiation of cultured cells was performed with a UV irradiator (Uvitec, CL-508M with 53 8 W 312 nm tubes). Prior to UV-irra-

diation, cells were rinsed in HBSS briefly, exposed to a dose of 25 mJ/cm2 UVB in HBSS and then placed in growth media.

Wholemount sample preparation
Whole back skin was lightly shaved and treated with hair removal cream (Nair Tough Hair, Coarse/Dark). The skin was then cut

into rectangular pieces of approximately 4 by 5 mm and incubated in PBS containing 5mM EDTA at 37�C for 2 hours. Samples
Cell Stem Cell 23, 687–699.e1–e8, November 1, 2018 e4



were transferred into PBS and the epidermis was carefully scraped off using curved scalpel while holding one corner of the skin with

forceps. The epidermal wholemounts were fixed in 4% paraformaldehyde in PBS for 30 minutes and then stored in PBS at 4�C.

Immunofluorescence
For staining, wholemounts were blocked in staining buffer (0.5% Bovine Serum Albumin, 0.25% Fish Skin Gelatin, and 0.5% Triton

X-100 in PBS with 10% goat or donkey serum according to the secondary antibody used) for 1 hour at room temperature. Samples

were incubated with primary antibody in staining buffer overnight, washed in PBS containing 0.2% Tween-20 four times, incubated

with fluorchrome-conjugated secondary antibody for 2 hours at room temperature and washed as before After the final wash,

samples were incubated with 40,6-diamidino-2-phenylindole (DAPI, 1 mg ml-1) in PBS at least for 20 minutes and mounted on slides

using Vectashield Mounting Medium with DAPI (Vector Labs).

EdU incorporation was detected with a Click-iT imaging kit (Life technologies) according to manufacturer’s instructions.

Cryosections (20 mm thickness) were fixed in 4% paraformaldehyde in PBS for 10 minutes and stained as described above.

All immunofluorescence images are representative of at least 3 animals.

Imaging
Confocal images were acquired on Leica TCS SP5 II or SP8microscopes using 10x, 20x or 40x objectives. Typical settings for acqui-

sition of z stacks were optimal pinhole, line average 4 scan speed 400 Hz and a resolution of 1024 3 1024 pixels or 2048 3 2048

pixels. Image analysis was performed using Volocity 6 or 6.3 image processing software (Perkin Elmer).

Transmission Electron Microscopy
Small pieces of skin (1 mm3) were fixed at 20�C for 2 hours in 2% paraformaldehyde with 2.5% glutalaldehyde in 0.1 M sodium ca-

codylate buffer at pH 7.42 with 0.1%MgCl2 and 0.05% CaCl2. They were then rinsed three times for 10 minutes each in sodium ca-

codylate buffer with chlorides and placed into 1% osmium tetroxide in sodium cacodylate buffer only, at room temperature for a

further 2 hours, rinsed 3 times again, mordantedwith 1% tannic acid for 30minutes and rinsedwith 1%sodium sulfate for 10minutes.

The samples were then dehydrated through an ethanol series and stained en bloc with 2% uranyl acetate for 1 hour at the 30%

ethanol stage and embedded in Epon resin. Ultrathin transverse sections were cut on a Leica UC6 microtome and mounted onto

grids before contrasting with uranyl acetate and lead citrate. Finally, images were recorded on an 120kV FEI Spirit Biotwin using

an F4.15 Teitz CCD camera and measurements of the junction gaps made directly using Tecnai User Interface software.

Clonal imaging
After immunostaining wholemounts, clones were imaged by confocal microscopy and the number of basal and suprabasal cells in

each clone counted in live acquisition mode.

Epidermal permeability barrier function
Epidermal barrier function was assessed by Lucifer yellow (lex 428 nm, lem 540 nm) dye diffusion assay. Mouse back skin was lightly

shaved and small pieces were placed dermis side down on PBS-soaked Whatman filter paper. 10 mL of 1 mM Lucifer Yellow (Sigma

L0259) in PBSwas applied onto the surface of the skin and parafilmwas laid on it to ensure the sample was covered with the solution.

Following incubation at room temperature for 1 hour, samples were frozen in Tissue-Tek O.C.T compound (Sakura) and cyrosections

(20 mm) were analyzed by confocal microscopy.

Immunoblotting
Cells were lysed in buffer containing 20mMHEPESNaOH pH7.2-7.5, Glycerol 10%, 0.4MNaCl, NP-40 0.5% (Sigma), 0.2mMEDTA,

1 mM Dithiothreitol (DTT), and 0.01% Halt Protease and Phosphatase inhibitor (ThermoFisher Scientific, cat.no.78415) and centri-

fuged at 13000 rpm at 4�C for 10 minutes. Protein concentrations were measured using standard Bradford protein assays (BioRAD

QuickSTARTBradford DyeReagents, cat.no.500-0202). Lysatesweremixedwith equal amount of 2x loading buffer (100mMTris-HCl

pH6.8, 4% SDS, 20% Glycerol, Bromophenol blue and 0.2% b-mercaptoethanol) and boiled at 96�C for 5 minutes. 4-10 mg of each

sample was loaded onto a 10%or 12%of SDS-polyacrylamide gel. Proteins were separated by electrophoresis and transferred onto

Immobilon-P membrane (pore size 0.45 mm,Millipore). Membranes were incubated in blocking buffer (5% dried skimmed milk, PBS,

0.1% Tween-20) at room temperature for 1 hour and then with primary antibodies diluted in blocking buffer for 1 hour at room

temperature or overnight at 4�C on rocking platform. After washing in 0.1% Tween-20 PBS three times, HRP conjugated secondary

antibodies (Dakocytomation) diluted in 0.5% skimmed milk in PBST were applied to the membrane for 30 min at room temperature

on a rocking platform followed by three washes in 0.1% Tween-20 PBS 20 min each. Proteins were detected using Immobilon

Western Chemiluminescent HRP substrate (Millipore WBLUC0500) or SuperSignal West Femto Chemiluminescent Substrate

(Thermo Scientific, cat.no. 34095) for high sensitivity.

Mass Spectrometry
Sample preparation

cDNAs encoding wild-type murine p53, p53R245W and p53R245W with a C-terminal cleaved T2A mutant sequence were amplified by

PCR using cDNA from transgenic animals. A p53S387Amutant was constructed by PCRmutagenesis. To produce retroviruses, pBabe
e5 Cell Stem Cell 23, 687–699.e1–e8, November 1, 2018



puro IRES-EGFP plasmids carrying one of the above cDNAs were transfected into Amphotrophic phoenix producer cells (ATCC) us-

ing Lipofectamine 2000, according to manufacturer’s instructions (ThermoFisher). Culture media containing retrovirus was treated

with polybrene (final concentration 8 mg/ml) and used to infect primary p53�/� mouse embryonic fibroblasts (MEFs) (Olive et al.,

2004). Whole cell lysate from the MEFs was prepared as described above, desalted using Amicon Ultra-0.5 Centrifugal Filter Unit

with Ultracel-10 membrane and diluted with immunoprecipitation (IP) lysis/Wash buffer.

Immunoprecipitation

Approximately 4 mg of cell lysate was used for immunoprecipitation. CM5 p53 (Vector Labs Cat No #VP-P956) antibody was

cross-linked with A/G magnetic beads using Pierce TM Crosslink Magnetic IP/Co-IP kit following the manufacturer’s instructions

(ThermoScientific Cat No #88805). The lysate was pre-cleared and applied to 150 ml of A/G magnetic beads cross-linked with

the p53 antibody. The beads were then washed and the protein was eluted by boiling at 95�C for 5 min in non-reducing buffer

(2 x concentration of 100 mM Tris-HCl pH 6.8 (Sigma SLBC0806V), 4% SDS, 20% Glycerol, Bromophenol blue (BDH prolabs

101184K). The total IP product was loaded on a 10% Tris-HCl acrylamide gel (Bio-Rad Cat No #161-155) and protein bands visual-

ized with SimplyBlue Coomassie� G-250 stain following manufacturer’s instructions (ThermoScientific Cat No #LC6060). The band

at appropriate size was cut out and digested into peptides for liquid chromatography tandem-mass spectrometry.

Liquid Chromatography-Mass spectrometry/Mass spectrometry (LC-MS/MS)

Experiments were performed using a nanoAcquity UPLC (Waters Corp., Milford, MA) system and an LTQ Orbitrap Velos hybrid ion

trap mass spectrometer (Thermo Scientific, Waltham, MA). Separation of peptides was performed by reverse-phase chromatog-

raphy using a Waters reverse-phase nano column (BEH C18, 75 mm i.d. x 250 mm, 1.7 mm particle size) at flow rate of 300 nL/min.

Peptides were initially loaded onto a pre-column (Waters UPLC Trap Symmetry C18, 180 mm i.d x 20mm, 5 mmparticle size) from the

nanoAcquity sample manager with 0.1% formic acid for 3 minutes at a flow rate of 10 mL/min. After this period, the column valve was

switched to allow the elution of peptides from the pre-column onto the analytical column. Solvent Awaswater + 0.1% formic acid and

solvent B was acetonitrile + 0.1% formic acid. The linear gradient employed was 3%–40% B in 60 minutes.

The LC eluent was sprayed into themass spectrometer bymeans of a standard Thermo Scientific nanospray source. Allm/z values

of eluting ions were measured in the Orbitrap Velos mass analyzer, set at a resolution of 30000. Data dependent scans (Top 10) were

employed to automatically isolate and generate fragment ions by collision-induced dissociation in the linear ion trap, resulting in

the generation of MS/MS spectra. Ions with charge states of 2+ and above were selected for fragmentation. Post-run, the data

was processed using Protein Discoverer (version 2.1., ThermoFisher). Briefly, all MS/MS data were converted to mgf files and the

files were then submitted to theMascot search algorithm (Matrix Science, LondonUK) and searched against a UniprotMusmusculus

database. A fixed modification of carbamidomethyl (C) and variable modifications of oxidation (M) and deamidation (NQ) were

selected. A peptide tolerance of 10 ppm (MS) and 0.6 Da (MS/MS) were also selected along with 2 missed cleavages.

Transcriptome analysis
Total RNA extraction from cultured primary mouse keratinocytes was carried out using the QIAGEN RNeasy Mini kit according to

manufactures instructions (QIAGEN). cDNA was synthesized using the Quantitect Reverse Transcription kit following manufactures

instructions (QIAGEN) and diluted 20-foled prior to qPCR analysis.

qRT-PCR was performed on StepOne Plus Real-Time PCR system (Life technologies). Each reaction (20ml) contained 5ml cDNA,

10 ml of TaqMan� Universal PCR Master Mix (Life technologies) and 1 ml of an appropriate taqman probe. Following PCR

parameters were used: hold 95�C for 10 min, followed by 45 cycles of step 1 at 94�C for 15 s, step 2 at 60�C for 55 s and acquiring

to cycling A (FAM). All reactions were performed in triplicates. Data was analyzed using The StepOnePlus Real-Time PCR System

and Excel.
Target gene TaqMan probe ID (Life technologies)

Lce3d Mm04337274_sH

Lor Mm01962650_s1

Mdm2 Mm01233136_m1

Cdkn1a Mm04205640_g1

Rprm Mm00469773_s1

Fas Mm01204974_m1

Dusp2 Mm00839675_g1

Tubb2b Mm00849948_g1
For RNA-seq, libraries were prepared in an automated fashion using an Agilent Bravo robot with a KAPA Standard mRNA-Seq Kit

(KAPA BIOSYSTEMS). In house adaptors were ligated to 100-300 bp fragments of dsDNA. All the samples were then subject to

10 PCR cycles using sanger_168 tag set of primers and paired-end sequencing was performed on Illumina’s HiSeq 2500 with 75 bp
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read length. ReadsweremappedusingSTAR2.5.3a, the alignment fileswere sorted andduplicate-marked usingBiobambam22.0.54,

and the read summarization was done using the script htseq-count from version 0.6.1p1 of the HTSeq framework (Anders et al., 2015;

Dobin et al., 2013). Differential expression analysis was done using the DESeq2 R package(Love et al., 2014), and the downstream

pathway analysis and visualization using R (https://www.R-project.org/) and the packages Pheatmap (https://cran.r-project.org/

web/packages/pheatmap/index.html), RColorBrewer (https://cran.r-project.org/web/packages/RColorBrewer/index.html), cluster-

Profiler(Yu et al., 2012) and org.Mm.eg.db (http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html).

Ultra-deep targeted sequencing
Epidermal whole mounts, approximately 4mm x 4mmper piece, were prepared fromUV-exposed and adjacent unexposed areas of

the skin as described above. This protocol was run for both induced and non-induced p53*/wt animals. DNA was extracted using

QIAGEN DNA micro kit (QIAGEN). A panel of 74 genes was chosen (see list below) based on the criteria of genes highly mutated

in cutaneous squamous cell carcinomas and/or basal cell carcinomas, as well as genes frequently mutated in normal skin samples.

The genes sequenced were:

Aff3, Ajuba, Arid1a, Arid2, Arid5b, Atm, Atp2a2, Bcl11b, Braf, Cacna1d, Card11, Casp8, Ccnd1, Cdkn2a, Cobll1, Crebbp, Ctcf.,

Ctnnb1, Dclk1, Dclre1a, Dnmt3a, Ddr2, Egfr, Eif2d, Ep300, Erbb2, Erbb3, Erbb4, Ezh2, Fat1, Fat2, Fat3, Fat4, Fbxw7, Fbxo21,

Fgfr3, Flt3, Grin2a, Hras, Kdm6a, Kdr, Kit, Kmt2c, Kmt2d, Kras, Lrp1b, Mtor, Nf1, Nf2, Notch1, Notch2, Notch3, Notch4, Nras,

Pik3ca, Ptch1, Pten, Rb1, Ros1, Smad4, Smarca4, Smo, Sox2, Stat5b, Tert, Tet2, Tgfbr1, Tgfbr2, Trp53, Tsc1, Vhl, Zfp750,

Nrf2, Keap1.

A custom bait capture panel (Agilent) was designed using Agilent SureDesign, targeting the exonic sequences of these 74 genes.

Paired-end 75bp read sequencing was performed on an Illumina HiSeq 2000_v4 machine. After removing reads for off-target

capture and PCR duplicates, the average on-target coverage across samples was 1476x. The paired-end reads were aligned to

the reference mouse genome (GRCm38) using BWA-MEM (v0.7.15)(Li, 2013). Variants were called using the latest version of Shear-

water (unpublished). Shearwater is a variant caller designed to detect low frequency somatic variants that can be challenging to find

usingmore conventional variant callers designed for germline variants (Gerstung et al., 2014). To avoid the probability of false positive

variant calls, Shearwater builds a model of the background error rate for each base in the genome. This error model is most accurate

when usingmatched normal samples from the same or closely related individuals to those for which variants are being called (to avoid

calling common germline variants) and processed in the same way in the lab (to avoid shared artifacts introduced during sample pro-

cessing and sequencing).

After running Shearwater, we detect 5888 putative variants summing across all skin biopsies. To reduce the number of false-

positives we then applied a series of filtering steps. First, we removed any variants detected in both irradiated and unexposed skin

biopsies from the same mouse. These are unlikely to be true somatic variants because we do not expect somatic clones to extend

across two distant biopsies. To correct for multiple-hypothesis testing we then applied the Benjamini-Hochberg correction for the

biopsies in each mouse independently, retaining only mutations with an adjusted q-value of less than 0.1(Benjamini and Hochberg,

1995). Finally, we removed variants without at least one supporting read from the forward and reverse strand. This resulted in a

total of 67 filtered variants. The variants called here do not include the p53* mutation, as this is removed by the Shearwater

algorithm as a germline variant. The variants were annotated using Ensembl Variant Effect Predictor (Version 84)(McLaren

et al., 2016)

STATISTICS

Source data and exact P values for statistical tests are listed in the Table S7 for each Figure.

Statistical analysis was performed using the Graphpad Prism software. The D’Agostino-Pearson omnibus test was used to test for

normality and the F-test to test for a significant difference in variance between groups. Student’s unpaired t test was performed for

normally distributed data where there was no significant difference in variance between groups. A two tailed paired t test was used

where applicable. For non-normally distributed data, a two tailed Mann-Whitney test was performed.

No statistical method was used to predetermine sample size. The experiments were not randomized. The investigators were not

blinded to allocation during experiments or outcome assessment.

QUANTITATIVE ANALYSIS AND MODELING

For details of quantitative analysis of wild-type (Figure S3A and S3B) and p53mutant progenitor cell lineage tracing data (Figures S6A

and S6B), the dynamics of mutant cells in the suprabasal cell layers (Figures S6C and S6D) and a quantitative model of clonal

competition during long-term ultraviolet light exposure (Figures 7F and S7E–S7G and Video S1) see STAR Methods, Quantitative

Analysis.
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DATA AVAILABILITY

Raw transcriptomic data can be viewed on https://www.ebi.ac.uk/ena using the following accession numbers: p53wt/wt,

ERS1755594, ERS1755602, ERS1755610, ERS1755618; p53*/wt, ERS1755595, ERS1755603, ERS1755611, ERS1755619; p53*/*,

ERS1755596, ERS1755604, ERS1755612, ERS1755620; p53R245W/R245W (untag), ERS1755597, ERS1755605, ERS1755613,

ERS1755621.

The accession number for the ultra-deep targeted DNA sequencing data reported in this paper is ENA: ERP023080.

CODE AVAILABILITY

Source code is accessible via Github:

https://github.com/PHJonesGroup/Murai_etal_SI_code
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ARTICLE

A single-progenitor model as the unifying paradigm
of epidermal and esophageal epithelial
maintenance in mice
Gabriel Piedrafita 1,2, Vasiliki Kostiou3, Agnieszka Wabik1, Bartomeu Colom 1, David Fernandez-Antoran1,

Albert Herms1, Kasumi Murai1, Benjamin A. Hall 3✉ & Philip H. Jones1,3✉

In adult skin epidermis and the epithelium lining the esophagus cells are constantly shed from

the tissue surface and replaced by cell division. Tracking genetically labelled cells in trans-

genic mice has given insight into cell behavior, but conflicting models appear consistent with

the results. Here, we use an additional transgenic assay to follow cell division in mouse

esophagus and the epidermis at multiple body sites. We find that proliferating cells divide at a

similar rate, and place bounds on the distribution cell cycle times. By including these results in

a common analytic approach, we show that data from eight lineage tracing experiments is

consistent with tissue maintenance by a single population of proliferating cells. The outcome

of a given cell division is unpredictable but, on average, the likelihood of producing pro-

liferating and differentiating cells is equal, ensuring cellular homeostasis. These findings are

key to understanding squamous epithelial homeostasis and carcinogenesis.
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The squamous epithelia that cover the external surface of the
body and line the mouth and esophagus consist of layers of
keratinocytes. In the mouse epidermis and esophagus cell

division is confined to the deepest, basal cell layer (Fig. 1a). On
commitment to terminal differentiation, proliferating cells exit
the cell cycle and migrate to the suprabasal cell layers, before
being ultimately shed from the tissue surface. Cellular home-
ostasis requires that cells are generated by proliferation at the
same rate at which they are shed. Further, to maintain a constant
number of proliferating cells, on average each cell division must
generate one daughter that will go on to divide and one that will
differentiate after first exiting the cell cycle. However, the nature
of the dividing cell population has been subject to controversy1–5.
Resolving proliferating cell behavior is key for understanding not
only normal tissue maintenance but also processes such as wound
healing and the accumulation of somatic mutations in normal
tissues during aging and carcinogenesis6,7.

Whilst murine epidermis and esophageal epithelium share the
same basic organization, there are significant differences between
the tissues. The esophageal epithelium is uniform, with no
appendages, while the epidermis is punctuated by hair follicles

and sweat ducts, which form distinct proliferative compartments
independent of the epidermis (Fig. 1a)5,8–10. The structure of the
epidermis also varies with body site. In typical mouse epidermis,
such as that on the back (dorsum), hair follicles are frequent but
there are no sweat glands10. In contrast, in the mouse paw epi-
dermis hair and, particularly, sweat ducts are common in the
anterior, acrosyringial region around the foot pads, while the
posterior, plantar epidermis is devoid of appendages10–12. The ear
epidermis is different again; it has uniform columns of differ-
entiating cells, not present elsewhere13. Finally, the mouse tail has
the most unusual structure, being a scale forming epidermis like
that of chicken legs and Crocodillia rather than typical mam-
malian skin14–16. This structural diversity has motivated a range
of studies to define the properties of proliferating cells at each site.

Genetic lineage tracing in transgenic mice has emerged as a
powerful technique for tracking the behavior of cells within tis-
sues (Fig. 1b)17. This is performed in mice expressing two
transgenic constructs (Fig. 2a,b). The first is a genetic switch,
using a bacterial recombinase enzyme Cre, expressed either from
a transgenic promoter or targeted to a specific gene18. A variety of
Cre expressing mouse strains have been used for studies of
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Fig. 1 Quantitative approaches to cell behavior in murine epithelium. a Structure of the stratified squamous epithelia from the interfollicular epidermis
(skin) and esophagus of adult mice. Proliferating keratinocytes are located in the basal layer. Upon differentiation they migrate through suprabasal layers
until they are ultimately lost by shedding. A balance should be established between cell division and cell loss to guarantee tissue homeostasis. HF, hair
follicle; SG, sebaceous gland. b Rationale of genetic lineage tracing. Low-dose induction in transgenic mice allows recombination and conditional labeling of
punctuated keratinocyte progenitors in the basal layer. These cells and their progeny remain labeled and can be tracked to study clonal dynamics over time.
c Rationale of Histone 2B-GFP (H2BGFP) dilution experiments (a top-down view of the basal-layer plane is sketched). Transgenic-mouse keratinocytes
express H2BGFP protein while on doxycycline (Dox) treatment. After Dox withdrawal cycling cells dilute their H2BGFP content with every division,
allowing to study cell-proliferation rate. d Different stochastic cell-proliferation models invoked to explain epithelial self-renewal. Branches reflect different
possible fates for a given proliferating cell upon division. SP: single-progenitor model. 2xSC: two stem-cell model, involving two independent types of
proliferating cells dividing at different rates. SC-CP: stem cell-committed progenitor model, involving slow-cycling stem cells underpinning a second
population of quickly-dividing progenitors.
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esophageal epithelium and epidermis (Fig. 2a,b). Cre is fused to a
mutant hormone receptor so it is only active following treatment
with a drug, giving control over when recombination is induced.
Using low doses of inducing drug allows the labeling of scattered
single cells. The second construct is a reporter, such as a fluor-
escent protein, typically targeted to the ubiquitously expressed Gt
(ROSA)26Sor (Rosa26) locus. The reporter is only expressed fol-
lowing the excision of a “stop” cassette by Cre and expression
persists in the progeny of the labeled cell. If the cells are labeled at
a low frequency, single-cell-derived clones of reporter expressing
cells result. If a representative sample of proliferating cells is
labeled and their progeny tracked over a time course, statistical
analysis of the evolving clone-size distributions may be used to
infer cell behavior3.

Alongside lineage tracing, a complementary transgenic assay
may be used to detect cells cycling at different rates and infer the
average rate of cell division (Fig. 1c). This uses a transgenic, drug
regulated synthetic promoter to control expression of a protein
comprising Histone 2B fused to green fluorescent protein (H2B-
GFP) (Fig. 2c, d). The H2B-GFP is initially expressed at high
levels in keratinocytes. Its transcription is then shut off and levels
of H2B-GFP protein measured by microscopy or flow cytometry.

The stable H2B-GFP protein is diluted by cell division, so if the
tissue contains cell populations dividing at different rates, the
more slowly dividing cells will retain higher levels of protein19.
Measurements of the rate of loss of fluorescence have been used
to estimate the rate of cell division4,5,20.

Lineage tracing has ruled out older deterministic models of a
proliferative hierarchy of asymmetrically dividing stem cells
generating ‘transit amplifying’ cells that undergo a fixed number
of divisions prior to differentiation3. These models predict that
clone sizes will rise and then remain stable. In multiple lineage
tracing experiments, however, mean clone size has been found to
increase progressively with time. However, several mutually
incompatible models in which proliferating cells have stochastic
fate have been proposed that do appear consistent with the data
in one or more experiments (Fig. 1d; Supplementary Methods).

The simplest stochastic model, the single-progenitor (SP)
hypothesis, proposes that all dividing keratinocytes are func-
tionally equivalent and generate dividing and differentiating
daughters with equal probability3,5. An alternative stem cell-
committed progenitor (SC-CP) paradigm, applied to the epi-
dermis proposes a hierarchy of rare, slowly cycling stem cells
which generate stem and progenitor daughters. The progenitors
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Fig. 2 Transgenic-mouse models used for lineage tracing and cell-proliferation studies. a, b Transgenic mice for lineage tracing are designed with two
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are biased toward differentiation so continual stem cell pro-
liferation is required4,21. A third model argues that two inde-
pendent populations of stem cells (2xSC) dividing at different
rates exist in the epidermis20. These models all give comparably
good fits to the results from individual experiments. However,
each has been proposed on the basis of distinct data sets analyzed
by different inference and fitting procedures, with limited testing
of alternative hypotheses.

Motivated by the disparity of the proposed models of cell
dynamics we set out to determine if a single model was consistent
across multiple data sets in both esophagus and different epi-
dermal regions. We use cell-cycle properties from the H2B-GFP
dilution data to fit lineage tracing results by maximum likelihood
parameter inference. We find that the data are consistent with a
simple SP model of homeostasis. We also show that the fates of
pairs of sister cells are anti-correlated, and that the basal layer
contains a substantial proportion of cells which will differentiate
rather than going on to divide.

Results
Cell-cycle times in epidermis and esophagus. Analysis of cell
proliferation in epithelia offers a simple way to test the predic-
tions of the disparate models of epithelial homeostasis by iden-
tifying the level of heterogeneity in the division rate of basal-layer
cells. The SP model predicts a single-cell population dividing at
the same average rate while the alternative hypotheses argue for
discrete populations dividing at different average rates. We
therefore investigated the dilution of H2B-GFP in the epidermis
and esophagus of R26M2rtTA/TetO-H2BGFP mice (Fig. 3a). The
animals were treated with doxycycline (Dox) for 4 weeks to
induce H2BGFP expression. Dox was then withdrawn and
H2BGFP protein levels in individual basal keratinocytes tracked
by direct, in situ measurement of GFP fluorescence from confocal
images of epithelial wholemounts at multiple time points. We
examined esophagus and epidermis from plantar area of the
hindpaw, ear, and tail (Figs. 3c, 4, and 5; Supplementary
Movies 1–3). Optical sections through the deepest, basal cell layer
were taken over at least 5 fields of view per tissue/animal and
H2BGFP fluorescence quantified for all non-mitotic nuclei fol-
lowing image segmentation based on DAPI staining (Fig. 3b;
Methods). Non-epithelial cells in the form of CD45+ leukocytes,
which retain high levels of H2BGFP, were excluded from the
analysis, but served as internal reference for label retention5 (e.g.,
Fig. 3c, insert; Figs. 4b, d, f and 5b, Supplementary Data 1). In
addition, for the analysis below we included a recently published
data set from dorsal epidermis performed using an identical
protocol22 (Fig. 4f; Supplementary Movie 4).

We first examined images for the presence of label-retaining
cells (LRCs) (Supplementary Data 1). We found no keratinocyte
LRC in the basal cell layer of the esophagus or any epidermal site
other than the interscale region of the tail (Fig. 5a). Rare
keratinocyte LRCs (4/1923, i.e., 0.2% of basal-layer keratinocytes)
were observed in interscale epidermis, in a single animal, 18 days
after DOX withdrawal (Fig. 5b). Their scarcity however suggests
that they are unlikely to make a substantial contribution to tissue
maintenance.

Next, we performed a quantitative analysis of the time series of
the individual-cell H2BGFP intensity histograms (Supplementary
Data 2). If there were multiple subpopulations of cells proliferat-
ing at different rates the distribution of H2BGFP intensities
would progressively diverge, becoming wider over time. We
found no evidence of such behavior in the esophagus and at
multiple sites in the epidermis (Fig. 3c; Supplementary Fig. 4A, B,
D, F). Specifically, several statistical tests of the modality of the
distribution were applied, showing no evidence for multiple

populations (Figs. 3d, 4; Supplementary Data 3; Supplementary
Methods).

To further challenge the hypothesis that there is a single
proliferating cell population, we examined whether this model
can recapitulate the observed H2BGFP intensity distributions at
each time point. For a given average division rate, we performed
simulations of H2BGFP-dilution kinetics under a wide range of
possible underlying (Gamma) distributions for individual cell-
cycle times (Figs. 3e, 4b, d, f, Supplementary Methods). We find
that the form of the H2BGFP histograms over time can indeed be
fully described by a single population of cells, dividing within a
relatively narrow range of cell-cycle times, further supporting the
SP model (Figs. 3c, f, g, 4; Supplementary Data 4).

Altogether, these observations strongly argue against scenarios
of heterogeneous proliferating cell populations, such as the SC-
CP or 2xSC models, at all sites other than in the tail where
marked variation between animals precluded reliable inference on
cell-proliferation rates (Fig. 5c). We conclude that in the basal
layer of the epidermis at multiple body sites and in the esophagus
proliferating cells divide at a unique average rate with highly
homogenous cell-cycle periods, consistent with the SP model
(Table 1).

A common analytical approach to resolve cell behavior. The
ability of lineage tracing to track the behavior of cohorts of
proliferating cells and their progeny over time courses extending
to many rounds of cell division offers the potential to validate
models of homeostasis. Having established the homogeneity in
the division rate of basal-layer cells, we then set out to determine
whether clonal dynamics across different lineage tracing data sets
were consistent with the SP paradigm.

Multiple lineage tracing studies have been published but these
used distinct approaches to infer models of cell behavior and did
not apply the additional constraint imposed by measuring the
cell-cycle time distribution3,4,11. Computational simulations
showed that the SP, SC-CP and 2xSC models all predict very
similar development of clonal features over time, which rendered
them hardly distinguishable from lineage tracing data alone
(Supplementary Methods). However, as our cell-proliferation
analyses do not support the SC-CP and 2xSC paradigms we
focused on testing the SP model.

By incorporating the measurement of the average division rate,
we could reduce the uncertainty in the parameter estimation, a
problem that has been generally overlooked in these stochastic
models (Supplementary Fig. 1A-B). For example, a relatively high
division rate and modest proportion of symmetric division
outcomes predict a similar clone-size distribution to those with
a slower turnover rate but higher level of symmetric divisions. In
turn, whilst long-term model predictions on clone-size distribu-
tions remained largely unaffected by the assumptions on the cell-
cycle time distribution, introducing realistic estimates for the
distribution of individual cell-cycle lengths affected short-term
clone-size predictions, impacting on the inferred parameter values
(Supplementary Fig. 2). This is due to the probability of a chain of
consecutive division events deviating from the average rate, for
example a run of several consecutive divisions shorter than
average cell-cycle times (Supplementary Fig. 2a). This results in a
broadening of the clone-size distribution at early time points after
labeling. At later times, where many rounds of division have
occurred in each clone, these random cycle time variations regress
toward the mean cycle time of the population (Supplementary
Fig. 2a). This disputes most analyses that use a Markovian
implementation which makes the biologically implausible assump-
tion that cell cycle times are distributed exponentially (i.e., the
likeliest time for a cell to divide is immediately after the division
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that generated it). We therefore developed a robust quantitative
approach where cell-cycle attributes estimated from H2B-GFP
experiments were embodied in (non-Markovian) model simula-
tions, and a subsequent maximum likelihood estimation (MLE)
method was applied across the available data sets for each body
site to challenge whether each of them was consistent with the SP
paradigm (Fig. 6; Supplementary Methods).

Clonal dynamics in esophageal epithelium. In order to explore
in vivo clonal dynamics, we began by studying a lineage tracing
data set from mouse esophageal epithelium (Fig. 7a). In this
experiment we used a strain (Lrig1-cre) in which a tamoxifen-
regulated form of Cre recombinase and enhanced green fluor-
escent protein (EGFP) are targeted to one allele of the Lrig1
locus8,23–25. We found LRIG1 protein was ubiquitously expressed

e

Rosa26 M2rtTA

TetO-HGFP

0 days 7 days

+Dox
Collection

12 days 18 days

a

R26 rtTA tetO H2B-GFPx

+Dox

–4 weeks

c 0 days 7 days 12 days 18 days

^

0 2 4 6 8 10

Cell-cycle period, tcc (days)

F
re

qu
en

cy

g

0 4 8 12 16 20

–12

–10

–8

–6

–4

–2

0

2

lo
g 2

 (
H

2B
G

F
P

 in
te

ns
ity

)

Time (days)

EXP tcc

GAM tcc

f

–10 –5 0

log2(H2BGFP int.)

0
0.2
0.4
0.6
0.8

1

R
el

. f
re

qu
en

cy

–10 –5 0 –10 –5 0 –10 –5 0

EXP tccfit GAM tccfit 

log2(H2BGFP int.) log2(H2BGFP int.) log2(H2BGFP int.)

d

Oesophagus

Paw

Ear

Back

Tail interscale

Tail scale

Animal no.

1 2 3 4

n.s.

n.s.

n.s.

n.s.

0.01§

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s. n.s.

Unimodality test

Unimodal
(p > 0.05)

Multimodal
(p < 0.05)

§(Fig. S3C)

Time

Time
Time

P
ro

b.
 d

iv
is

io
n

t0

H0: EXP tcc

H1: GAM tcc

P
ro

b.
 d

iv
is

io
n

tend

tendTime

S
im

ul
at

io
ns

M
ar

ko
vi

an
N

on
-M

ar
ko

vi
an

DAPI CD45 H2B-GFP

ROIs ROIs

H2B-GFP
quantification

Exclude
CD45+ (•)

Exclude
mitotic nuclei (*)

*

•

•

≥ 5 fields of view
per tissue/mouse

Basal
layer

b

100 ± 2.1% 19.0 ± 0.9% 3.4 ± 0.2% 0.8 ± 0.1%

n.s. n.s.

n.s. n.s. n.s.

n.s. n.s. n.s.

n.s. n.s. n.s. n.s.

0.01§ n.s.

n.s. n.s.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15258-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1429 | https://doi.org/10.1038/s41467-020-15258-0 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in the basal layer of esophageal epithelium in wild type mice
(Supplementary Fig. 3A). Consistent with this finding, in Lrig1-
cre animals, EGFP, reporting Lrig1 transcription was detected in
94 ± 0.3% (s.e.m.) of basal cells (Supplementary Fig. 3B). These
observations indicate Lrig1 is widely expressed in the proliferative
compartment of esophageal epithelium and is suitable for lineage
tracing of proliferating esophageal keratinocytes (Supplementary
Methods).

To track the fate of basal cells, Lrig1-cre mice were crossed with
the Rosa26flConfetti/wt (Confetti) reporter strain which labels cells
with one of four possible fluorescent proteins (green, GFP, cyan,
CFP, yellow, YFP, or red RFP) after recombination (Supplemen-
tary Fig. 3c, d)26,27. In some Cre inducible mouse lines, reporter
expressing clones can appear without induction with Tamoxifen.
However, no fluorescent protein expression was found in adult
uninduced Lrig1-cre/Confetti mice (Supplementary Data 5)28.
Next, cohorts of Lrig1-cre/Confetti animals were treated with a
low dose of Tamoxifen that resulted in labeling of only 1 in 300 ±
106 (mean ± s.e.m.) basal cells at 10 days post induction. Clones
containing one or more basal cells were imaged in esophageal
epithelial wholemounts from at least three mice at multiple time
points over 6 months following induction (Fig. 7b; Supplemen-
tary Fig. 4a; Supplementary Data 5). Only CFP, YFP, and RFP
expressing clones were counted because of Lrig1-driven GFP
expression in all basal cells.

The pooled Confetti clone data set displayed several important
features, which were recapitulated by clones labeled with each
individual reporter. No statistically significant differences were
observed between CFP, YFP, and RFP clone-size distributions at
each time point (see Methods). The density (clones/area) of
labeled clones decreased progressively, consistent with clone loss
through differentiation, while the number of basal and suprabasal
cells in the remaining clones rose (Fig. 7c; Supplementary Fig. 4B,
C). The proportion of labeled basal cells remained constant
during the experiment, indicating the labeled population was self-
maintaining over a 6-month period, consistent with labeled cells
being a representative sample of all proliferating cells in the
homeostatic tissue (Fig. 7c). At late time points, the clone-size
distribution scaled with time. This means that if, for example,
time doubles, not only the average clone-size shape and breadth
of the clone-size distribution also double. More formally, the
probability of seeing clones larger than x times the average clone
size became time-invariant, following a simple exponential f(x)=
e−x (Supplementary Fig. 4D)29. Collectively, these features are

hallmarks of neutral competition, in which clonal dynamics result
from stochastic cell fates, with an average cell division generating
one proliferating and one differentiating daughter cell, a scenario
consistent with the SP model (Supplementary Methods)3,29,30.

The measurement of the average cell division rate (λ) and
inference of the cell-cycle time distribution constrain the fitting of
lineage tracing data, providing a stringent test of the candidate SP
model (Supplementary Figs. 1A–C, 2E). Within this paradigm
unknown parameters are the probability of a progenitor cell
division generating two dividing (PP), or two differentiating (DD)
daughters (r), and the stratification rate (Γ), which in homeostasis
sets the fraction of progenitor cells in the basal layer (ρ) (Fig. 6).
Our technique for identifying the most appropriate cell-cycle
distribution coupled with an MLE grid search estimated
parameter values that gave an excellent fit with the clone-size
distributions at both early and late time points for the Lrig1/
confetti data set (Fig. 7d–e; Table 1). The model predictions were
within the 95% confidence interval of the measured proportion of
clones of a given size at each time point in 27/28 cases. To
quantify the quality of the fit, we calculated both the determina-
tion coefficient between the model prediction and measured clone
sizes, averaged across all time points, RT2, and the standard error
of the fit, ST, a measure of the standard deviation between the
model estimates and the experimental data, averaged over all time
points. For the fit of the SP model to the Lrig1/Confetti data set,
RT2= 0.93, ST= 4.3. Values of R2 and S for experimental data at
each time point are given in Supplementary Data 4.

Next, we applied the same approach to an independent,
published lineage tracing data set from esophageal epithelium
where clones were labeled with YFP by Cre expressed from an
inducible Cyp1a1 (Ah) promoter in AhYFP mice5. Parameter
values very similar to those from the Lrig1/confetti experiment
gave predictions from the SP model within the 95% CI for all 49
points in the experimental data set (Fig. 7d, e; Supplementary
Fig. 4e; Table 1; Supplementary Data 4; Supplementary Methods).
Quantifying the quality of fit, we found RT2= 0.98, ST= 2.8. We
noted that including the cell-cycle time constraints resulted in an
improved agreement with early time point clone sizes compared
with the original publication (RT2= 0.97, ST= 3.3), where cell-
cycle time distributions were assumed exponential (see Supple-
mentary Data 4 for detailed goodness-of-fit statistics)5.

As a further validation, we tested the predictions of the SP model
against a third, more limited data set from Krt15-crePR1 R26mT/mG

mice in which a red-to-green fluorescent reporter was used with

Fig. 3 Analysis of cell proliferation in epidermis and esophageal epithelium. a Protocol: R26M2rtTA/TetO-H2BGFP mice were treated with doxycycline
(Dox) to induce H2BGFP expression (green). Following Dox withdrawal, H2BGFP transcription ceases and protein levels dilute with cell division. b H2BGFP
fluorescence was quantified in non-mitotic basal cell nuclei in optical sections of the basal layer of wholemounts. Scale bar, 20 μm. c Representative
confocal z stacks of the esophageal basal layer showing H2BGFP (green) and pan-leukocyte marker CD45 (red). Images are representative of a total of 15
fields of view from 3 individual biologically independent mice at 0, 7, and 12 days and 10 fields of view from two individual mice at 18 days. Infrequent label-
retaining cells (LRCs) (arrowhead) are positive for CD45 (insert; blue: DAPI). Scale bars, 20 μm. Histograms show keratinocyte H2BGFP intensity for each
time point (in green; bottom panels) with mean ± s.e.m. values from each field of view. Best fits for the SP model with exponential- (gray) or gamma-
distributed cell-cycle periods (orange lines) are shown. Raw values for H2B-GFP intensity are given in Supplementary Data 2. d Outcome of Silverman’s
unimodality test applied to individual-cell H2BGFP distributions at 18 days in esophagus and epidermis (analyses are separated per animal; this test is
effectively two tailed, no multiple-testing corrections are made on p values, exact p values are given in Supplementary Data 3)46. A single tissue in a single
animal was found to be bimodal, in this case due to variability between fields of view where cells differed by a single round of division (see Fig. 5c). e SP-
model simulations using different distributions of cell-cycle times tcc (EXP: exponential; GAM: Gamma) with the same average division rate (blue vertical
line), the Gamma-shaped distributions predict a more homogeneous dilution. f Time course in the H2BGFP intensity distributions from esophageal
epithelium (normalized to average keratinocyte intensity at time 0). Green boxplots: experimental data from n= 3 biologically independent mice at 0, 7,
and 12 days and 2 at 18 days. Centre line of box is median value, box indicates 25th and 75th centiles and whiskers indicate minimum and maximum values.
The computed average division rate 〈λ〉= 2.9/week; solid black line. Gray region: range of H2BGFP intensities predicted from models assuming
exponentially distributed cell-cycle times (interquartile range, inner dashed black lines). Light orange region: range of H2GFP intensities inferred with a
gamma cell-cycle time distribution (interquartile range in dark orange, delimited by inner dashed orange lines). g Most-likely (gamma) shapes for the
distribution of the cell-cycle period of esophageal keratinocytes, estimated from fits to the H2BGFP-dilution data. A conservative solution (in dark orange)
is used for further inference. Vertical blue line: mean cell-cycle period.
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inducible Cre expressed from a Krt15 promoter (Supplementary
Methods)31. Although the SP paradigm was criticized by these
authors, it yielded an adequate fit (RT2= 0.91, ST= 2.6) with their
own data over the experimental time course (Supplementary Fig. 4f;
Supplementary Data 4). The consistent agreement of the SP model

to three independent lineage tracing data sets using different
combinations of transgenic Cre and reporter alleles strongly
supports the conclusion that the esophageal epithelium is
maintained by a single-progenitor population and argues for the
reliability of our parameter estimates.
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Clonal dynamics in skin epidermis. We next investigated clonal
dynamics in the epidermis through available lineage tracing data
sets from the typical interfollicular epidermis of the mouse
hindpaw (plantar), ear and back (dorsum). Applying the MLE
approach constrained by the cell-cycle time analysis at each body
site yielded slightly improved fits of the SP model to data from
Axin2-creERTR26Rainbow animals in paw epidermis (RT2= 0.98,
ST= 2.8) and also ear epidermis (RT2= 0.97, ST= 3.5) and dorsal
interfollicular epidermis (RT2= 0.94, ST= 5.0) from AhYFP mice
compared with those fits reported in the original publications
(RT2= 0.93, ST= 5.16; RT2= 0.97, ST= 3.52; RT2= 0.92, ST=
6.01; respectively) (Fig. 8; Supplementary Methods, Supplemen-
tary Data 4)11,22,32. Despite differences in average keratinocyte
division rates across territories (λ ≈ 2.0, 1.5, 1.2/week for plantar
hindpaw, ear and dorsum, respectively), all analyzed regions
share comparable intermediate proportions of progenitor basal
cells ρ (~55%, the rest corresponding to differentiating basal cells)
and a predominance of asymmetric cell divisions (i.e., low
inferred values for the probability of symmetric division, r < 0.25)
(Table 1; Supplementary Data 4).

Particularly relevant are the implications for the mode of
keratinocyte renewal in back skin, as a previous work claims that
two stem cell populations dividing at different rates coexist at
this site (2xSC model)20. This argument was supported by a
quantitative analysis of H2BGFP-dilution patterns in Krt5tTA/
pTRE-H2BGFP mice, a system that differs from that we use
above in that mice are treated with Dox to suppress H2B-GFP
expression instead of using it as activator (Supplementary
Fig. 5A)20. However, in that publication, which rejected the SP
model, exponential distributions for cell division/cell stratifica-
tion rates were assumed. Here we have shown this to be
inappropriate for the short time scale of the experiment
(Supplementary Methods). Our computational reanalysis, con-
strained by cell-cycle time distributions demonstrated the SP
model gave as good a fit to the Krt5tTA/pTRE-H2BGFP-dilution
data as the more complex 2xSC hypothesis (SP RT

2= 0.85, ST=
0.06 vs. 2xSC RT

2= 0.87, ST= 0.05 for basal layer; SP RT
2= 0.78,

ST= 0.07 vs. 2xSC RT
2= 0.79, ST= 0.06 for spinous layer)

(Supplementary Fig. 5B; Supplementary Methods; Supplemen-
tary Data 4). Indeed, the inferred parameter values from the
AhYFP mouse back skin epidermis proved robust, providing
good fits to another lineage tracing data set from the same body
site in Lgr6-eGFPcreERTRosa26flConfetti mice (RT

2= 0.96, ST=
2.39) (Supplementary Fig. 5C; Supplementary Methods; Supple-
mentary Data 4)33.

Finally, we turned to revisit clonal dynamics in the mouse tail
epidermis. Previous studies of tail have argued that the
hierarchical SC-CP paradigm applies to proliferating cells in the
interscale areas while the SP paradigm describes behavior in the

scale regions (Fig. 5a)4,21. These claims were primarily supported
by the observation of LRCs in the interscale region in H2BGFP-
dilution experiments in Krt5tTA/pTRE-H2BGFP mice. However,
our quantitative reanalysis of this data set showed the SP-model
fits the reported H2BGFP intensity histograms over time as well
as the SC-CP model (SP RT

2= 0.89, ST= 0.04 vs. SC-CP RT2=
0.89, ST= 0.04) (Supplementary Fig. 6A; Supplementary Data 4)
21. Even though we cannot discard the possibility of a
subpopulation of slow-cycling stem cells in the tail, such cells
would seem to be rare in interscale epidermis (Supplementary
Data 1). We noted that a large proportion of the rare LRCs were
identified as CD45 expressing leukocytes in our data set (Fig. 5b;
Supplementary Data 1). Further analysis argued that there was no
conflict between the reported tail lineage tracing data and the SP
model (Supplementary Fig. 6B-H; Supplementary Methods;
Supplementary Data 4).

Discussion
Overall, we find that combining cell-cycle distribution analysis
with lineage tracing argues mouse esophageal epithelium and
epidermis are maintained by a single population of progenitor
cells, with the sole possible exception of the interscale compart-
ment of tail skin. The quality of the fit of the SP model to the data
is equivalent to or exceeds that of more complex models, ren-
dering the need to invoke additional cell populations redundant.
The nine lineage tracing data sets analyzed include a variety of
Cre and reporter strain combinations, and are all consistent with
the SP model. In addition, live imaging studies of the epidermis
are consistent with a single proliferating cell population main-
taining the tissue34.

Quantitative analysis of cell proliferation in the different tissue
types identifies further constraints that must be considered by
researchers exploring the appropriateness of alternative models.
The original SC-CP and 2xSC models invoked 12% and 30% of
basal-layer keratinocytes constitute slow-cycling stem cells,
respectively4,20. Histone dilution experiments have allowed us to
make strong statements about the nature of any proposed second
population. For each body site, with the exception of tail inter-
scale epidermis, no keratinocyte label-retaining cells were detec-
ted in over 2000 cells imaged at each location. It follows that any
slow-cycling stem-cell population must have substantially fewer
than one slow-cycling cell per thousand basal keratinocytes to be
compatible with observations reported here, making it unlikely
that such slow-cycling cells will make a detectable contribution to
tissue homeostasis. The hypothesis that two subpopulations exist,
but that they both divide at a similar rate, is hard to sustain in the
face of the close agreement of the simpler SP model across all the
analyzed data sets.

Fig. 4 H2BGFP-dilution and cell-cycle inference in skin epidermis at different sites. a Theoretical distributions of individual-cell H2BGFP intensities
expected after 3 weeks dilution under the SP, SC-CP and 2xSC scenarios assuming gamma-distributed cell-cycle periods. Simulations considered an
average division rate for stem cells 4× slower than for progenitors in SC-CP and 2xSC (top panels). Predictions of each model using published parameters
are shown below. All theoretical SC-CP or 2xSC scenarios represented in this figure were significant by 6 different unimodality tests (see Supplementary
Data 3). b, d, f Representative confocal z stacks of hindpaw (plantar), ear and dorsal epidermal basal layer, respectively, from R26M2rtTA/TetO-H2BGFP
mice, showing H2BGFP (green) and immunostaining for pan-leukocyte marker CD45 (red). Analysis of hindpaw epidermis was confined to the posterior,
plantar region (pl.), excluding the acrosyringia (ac.), cartoon. Label-retaining cells (LRCs) are CD45+ leukocytes (arrowheads). Scale bars, 20 μm. Images
shown are representative of a total of 18 fields of view from 3 mice at 0 and 12 days, 14 fields of view from 3 mice at 7 and 18 days in (b), 18 fields of view
from 3 mice at 0, 7 and 12 days and 12 fields of view from 2 mice at 18 days in (d), and 20 fields of view from 4 mice at 0 and 11 days and 17 fields of view
from 4 mice in (f). Lower panels: Individual-keratinocyte H2BGFP intensity levels (in green) with mean ± s.e.m. values from different fields of view. Best fits
for the SP model with exponential- (gray) or gamma-distributed cell-cycle periods (orange lines) are shown. See Supplementary Data 2 for raw intensity
values and summary statistics. c, e, g Best estimates for the (gamma) distribution of the keratinocyte cell-cycle times in hindpaw, ear, and dorsal epidermis,
respectively, estimated from fits to H2BGFP-dilution data. Conservative solutions (in dark orange) are used for further inference. Vertical blue lines:
average cell-cycle period per site: 〈λ〉= 2.0, 1.5, 1.2/week for paw (c), ear (e), and dorsum (g), respectively.
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Fig. 5 H2BGFP-dilution analysis in tail epidermis. a Structure of the mouse tail epidermis. 3D reconstruction of confocal z stacks (top panel) and
orthogonal xyz view (mid panel). Apical blister-shaped regions (scale) alternate with deeper regions (interscale) (boundaries delineated by dotted lines),
being arranged in lines separated by hair follicles (asterisks). Green: H2BGFP expression; white: KRT14 immunostaining (as a marker of basal layer); red:
CD45 immunostaining; blue: DAPI. Scale bars, 200 μm. Bottom panel: Cartoon illustrating the tail skin structure. b Representative confocal z stacks of scale
and interscale regions of tail epidermis during H2BGFP chase experiments in R26M2rtTA/TetO-H2BGFP mice, showing H2BGFP (green), immunostaining for
KRT14 (white) and immunostaining for pan-leukocyte marker CD45 (red). Images from the same time point correspond to different mice to illustrate inter-
animal variation. Label-retaining cells (LRCs) are highlighted with arrowheads (CD45+ cells) or full arrows (CD45− cells) (details in inserts; blue: DAPI).
Scale bars, 20 μm. c Time course of basal-layer keratinocyte H2BGFP intensity distributions from scale and interscale regions of tail. Experimental data
shown as boxplots per individual biologically independent mouse (intensities normalized to average keratinocyte intensity at time 0, raw H2B-GFP intensity
values are given in Supplementary Data 2). n= 3 animals at each time point except 18 days where n= 2 mice. Centre line of box is median value, box
indicates 25th and 75th centiles and whiskers indicate minimum and maximum values. Solid black lines: average H2BGFP-dilution rates (within 95% CI
limits—shaded gray areas—where the value of λ= 1.2/week reported by Mascre et al.4 falls). Insert: Detail of H2BGFP intensity distributions separated per
field of view for the single tissue found to be bimodal in the overall, per-animal modality test (see Fig. 3d). Analyses per field of view all resulted non-
significant (unimodality).
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The improved resolution of parameter estimates identifies
differences in cell division rates across the epidermis and the
esophagus (Table 1). Proliferating cells divide rapidly in the
esophageal epithelium, on average every ~2.4 days (similar to
keratinocyte turnover rate in oral mucosa), while progenitor

cells cycle comparatively slower in the epidermis, on average
between 3.5 and 6 days depending on body site35. However, our
study suggests individual cell-cycle periods are tightly con-
trolled, showing little variation around average division rate,
per territory.

Table 1 Parameter values inferred for progenitor cell behavior in different murine epithelial regions as derived from quantitative
lineage tracing.

Tissue Experimental model Reference min
tcc (days)

Division rate,
λ (/week)

Symmetric
division prob., r

% of progenitor
cells, ρ

Stratification rate,
Γ (/week)

Esophagus Lrig1-eGFP-CreERT/
R26-flConfetti

0.5 2.9 (2.7; 3.0) 0.10 (0.07; 0.15) 65 (50; 96) 5.4 (2.9; 69.6)

Ah-CreERT/R26flEYFP 5 0.5 2.9 (2.7; 3.0) 0.06 (0.04; 0.10) 56 (50; 89) 3.7 (2.9; 23.5)
Paw Epidermis Axin2-CreERT2/R26-

Rainbow
11 1 2.0 (1.7; 2.3) 0.14 (0.12; 0.17) 53 (49; 58) 2.3 (1.9; 2.8)

Ear Epidermis Ah-CreERT/R26flEYFP 32 1 1.5 (1.2; 1.7) 0.04 (0.03; 0.06) 54 (47; 72) 1.8 (1.3; 3.9)
Back Epidermis Ah-CreERT/R26flEYFP 22 2 1.2 (1.1; 1.3) 0.04 (0.03; 0.07) 61 (55; 76) 1.9 (1.5; 3.8)

Parameter values indicated correspond with the maximum likelihood estimate (MLE), values in parentheses are 95% confidence bounds (see Supplementary Methods for details).
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The proportion of progenitor cells in the basal layer and the
probability of symmetric cell division outcomes (r) are similar
across body sites (Table 1). The insight that a substantial pro-
portion of cells in the basal layer will proceed to differentiate
rather than divide will be important for the interpretation for the
growing body of single-cell RNA sequencing data in these tis-
sues33,35. In addition, the low values of r we identify give insight
into the basis of cell fate determination (Fig. 9). In principle, if
every basal cell divides or differentiates with equal probability, as
proposed by Leblond, r will be 0.25, as expected from any pair of
uncorrelated basal cells1. However, this scenario is excluded by

our analysis. Instead, the consistent values of r < 0.25 indicate the
fate of sister cells is preferentially anti-correlated. This phenom-
enon can be associated to local coordination of neighboring cell
stratification and division events36. Our results argue that antic-
orrelation of sister cell fates applies generally in the epidermis and
esophagus, pointing to common mechanisms of keratinocyte cell
fate regulation.

The single-progenitor model captures the average behavior of
progenitor cells during homeostasis. However, epithelia are fre-
quently subject to wounding. To repair the tissue requires a
temporary imbalance in cell fate, with the progenitors close to the
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wound producing an excess of progenitor over differentiating
daughters on average. This occurs as part of a coordinated set of
responses that includes cell migration and altered cell differ-
entiation5,37,38. Once the epithelial defect is resolved, the pro-
genitors revert to homeostatic balance. In esophageal epithelium
and the plantar epidermis, wound repair is achieved by pro-
genitors alone5,11. In the epidermis at other sites, cells migrating
from other proliferative compartments, the hair follicles and
sweat ducts, may also contribute to wound healing9,10,39,40. The
ability to transiently increase the likelihood of progenitors gen-
erating proliferating progeny provides a rapid and robust
response to injury. The down side of this adjustable progenitor
fate is that it may be subverted by mutations acquired during
tissue aging, leading to mutant clonal expansions that may
undergo malignant transformation22,41–43.

How might these findings in mice relate to homeostasis human
epidermis? Human skin differs from that of mice with many
more epidermal cell layers and undulates in thickness at most
body sites creating folds called rete ridges and dermal papillae44.
Nevertheless, a population of cells with balanced stochastic cell
fate generating equal proportions of proliferating and differ-
entiating cells has been identified in a live imaging study of
human keratinocytes in primary culture37. In vivo lineage tracing
in humans is not feasible. However, human epidermis has been
grafted onto immune compromised mice and injected with len-
tiviral vectors carrying fluorescent protein reporters. When the
resulting clones were imaged 6 months later they were found to
vary widely in size and shape and arise from any point in the
basal layer, both in rete ridges and dermal papillae45. These
findings are consistent with the single-progenitor paradigm, but
cannot provide quantitative challenge to the model available
in mice.

The lineage tracing approaches considered above have been
enriched by live imaging studies of mouse epidermis34,36. Whilst
lineage tracing resolves the average behavior of a population of
proliferating cells over many cell generations, live imaging allows
the fate of individual cells to be resolved. Insights gained from live
imaging include showing that cell fate is stochastic, the prob-
ability of generating progenitor and differentiated daughters is
equal and that the fate of cells is not coordinated across cell
generations, all of which are key features of the SP model34.

We conclude that the single-progenitor model is consistent with
a large body of lineage tracing and cell-cycle data collated from
multiple studies and identifies the behavior of proliferating cells
that underpins epidermal and esophageal epithelial homeostasis.

Methods
Animals. All experiments were conducted according to the UK Home Office
Project Licenses 70/7543, P14FED054 or PF4639B40. Male and female adult mice
aged 3–18 months were used for in vivo experiments. Animals were housed in
individually ventilated cages and fed on standard chow and maintained in SOPF
health status.

Doubly transgenic, Lrig1-eGFPcreERT/wt R26flConfetti/wt mice on a C57/Bl6N
background were generated for lineage tracing studies in esophageal epithelium, by
crossing Lrig1-eGFP-ires-creERT2 mice8 onto a Rosa26flConfetti multicolor reporter
line26. Transcription of the Cre recombinase-mutant estrogen receptor fusion
protein (CreERT) is under the control of an endogenous allele of Lrig1. Following
induction with tamoxifen, CreERT protein internalizes into the nuclei and excises a
LoxP-flanked “STOP” cassette resulting in the expression of one of the four
Confetti fluorescent reporters (YFP, RFP, CFP, or GFP). R26M2rtTA/TetO-H2BGFP
mice, doubly transgenic for a reverse tetracycline-controlled transactivator (rtTA-
M2) targeted to the Rosa26 locus and a HIST1H2BJ/EGFP fusion protein
(H2BGFP) expressed from a tetracycline promoter element, were used for label-
retaining experiments5,22. H2BGFP expression is induced by treatment with
doxycycline (Dox) and dilution of H2BGFP protein content can be chased upon
Dox withdrawal. All animals were induced at 8–12 weeks age. Cohorts of at least
two or three animals per time point were culled and esophagus and/or skin
epidermis collected for analysis.

Wholemount preparation and immunostaining. Esophageal epithelium whole-
mounts for lineage tracing were prepared as follows: The esophagus was cut
longitudinally and the middle two-thirds of the tract was incubated for 3 h in 5 mM
EDTA in PBS at 37 °C. The epithelium was then peeled away from the underlying
submucosa, stretched and fixed for 30 min in 4% paraformaldehyde in PBS.
Samples were stored in PBS at 4 °C until subsequent analysis. Skin pieces of ~0.5
cm2 were cut and incubated for 1 h in 5 mM EDTA in PBS at 37 °C. Skin epidermis
was then peeled away using fine forceps and processed as described above for the
esophageal epithelium.

For staining, wholemount samples were incubated in Permeabilization Buffer
(PB) (0.5% BSA, 0.25% Fish Skin Gelatin (FSG), 0.5% Triton X-100/PBS) for 15
min at room temperature (RT), then blocked in 10% goat or donkey serum/PB
(according to the secondary antibody used) for 1 h at RT and incubated overnight
with primary antibody at 4 °C. Primary antibodies used were Lrig1 antibody (R&D
Systems, Cat. AF3688), ITGA6 antibody (clone GoH3, Biolegend, Cat. B204094),
Alexa Fluor® 647 anti-CD45 (clone 30-F11, Biolegend, Cat. 103124), Keratin 14
antibody (clone Poly19053, Biolegend, Cat. 905301). Samples were subsequently
washed four times for 30 min in 0.2% Tween-20/PBS and incubated with an
appropriate secondary antibody for 3 h at RT. Secondary antibodies used were
Goat or Donkey Alexa Fluor 488/546/555/647 (Molecular Probes). A washing step
with 0.2% Tween-20/PBS was repeated and samples were incubated for 30 min
with DAPI (Sigma-Aldrich) and finally mounted in DAKO Vectashield Mounting
Medium with DAPI (Vector Labs).

Dilution of Histone 2B-GFP protein content. R26M2rtTA/TetO-H2BGFP animals
were treated with doxycycline (Dox, 2 mg/ml in drinking water sweetened with
10% blackcurrant & apple) for 4 weeks. Dox was then withdrawn and animals
culled at different time points to track H2BGFP florescence dilution. Epithelial
wholemounts from esophageal epithelium and skin epidermis were imaged on a
Leica TCS SP8 confocal microscope using ×20 or ×40 objectives at 1024 × 1024
resolution, line average 4 and 400 Hz scan speed. Individual-cell H2BGFP

Fig. 7 Quantitative lineage tracing in esophageal epithelium. a Protocol: clonal labeling was induced in Lrig1-eGFPcreERT/wt R26flConfetti/wt mice and
samples analyzed at different times from 10 to 180 days post induction, as single labeled cells develop into clones. See Supplementary Data 5 for source
data for panels (c) and (e). b Rendered confocal z stacks of the esophageal basal layer showing typical RFP clones (red) at the times indicated. Blue is
DAPI. Scale bars, 10 μm. Images are representative of 104 RFP clones (10 days), 75 RFP clones (30 days), 106 RFP clones (84 days), and 274 RFP clones
(180 days). c Quantitative characteristics of the labeled clone population over time: average basal-layer clone size (i.e., mean number of basal cells/
surviving clone) (left panel), average density of labeled clones in the basal layer (middle panel), average fraction of labeled basal cells at the indicated time
points (right panel). Observed values are shown in individual biologically independent mice (blue circles, n mice= 3 at 10 and 30 days, 6 at 84 days, and 4
at 180 days) with error bars (black) indicating mean ± s.e.m. of all mice at each time point. A total of 300 or more clones was quantified at each time point.
Orange lines: SP-model fit (shaded area corresponds with 95% plausible intervals). Orange line and shading in last panel show mean and s.e.m. across all
time points (from n= 16 mice), which is consistent with homeostatic behavior. d SP-model parameter inference on Lrig1- and Ah-CreERT driven lineage
tracing data sets from esophagus5. Parameter estimates are affected by the underlying modeling assumptions on the cell-cycle period, whether default
exponential cell-cycle time distributions were considered (solutions in gray) or realistic gamma distributions implemented, as inferred from the cell-
proliferation analysis (solutions in orange). Regions within the dashed gray lines fall consistent with the predicted ρ/r ratios from the linear scaling of the
average clone size. The total number of clones counted in each data set is displayed in the corresponding graph and previous parameter estimates given in
ref. 5 shown as black error bars. e Experimental Lrig1- and Ah-CreERT-derived basal-layer clone sizes from ref. 5 (dots with error bars indicating the standard
error of a proportion) fit well with the SP model, with gamma-distributed cell-cycle times (lines; prediction from maximum likelihood estimation). Dim
dashed lines: fits from ref. 5. Frequencies for each clone size (basal cell number) are shown in different colors. n= 3 biologically independent mice at each
time point except for the Lrig1/confetti where n= 6 mice at 12 weeks and 4 mice at 26 weeks.
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intensities were determined by image segmentation/nuclear identification, using a
semi-automated object-recognition macro (based on the DAPI channel) built in
ImageJ, and the process completed by manual curation. Per-cell intensity values
given are averaged over all nuclear pixels. All H2BGFP samples were stained for
CD45 and positive cells excluded from the analysis.

Lineage tracing. Low-frequency expression of the Confetti reporters in the Lrig1-
eGFP-ires-creERT2 R26flConfetti/wt mouse esophagus was achieved by inducing 10-
week-old animals with intraperitoneal injection of a single dose of 1 mg tamoxifen
(100 μl of 10 mg/ml) on two consecutive days8. This resulted in a labeling efficiency

of 1 in 301 ± 106 (mean ± s.e.m.) basal cells by 10 days post induction (allowing
individual clone tracking without merging). Between three and six mice were culled
per time point. Confocal images of immunostained wholemounts were acquired on
a Leica TCS SP8 confocal microscope (×10, ×20, and ×40 objectives; typical settings
for z-stacks acquisition: optimal pinhole, line average 4, bi-directional scan with
400–600 Hz speed, resolution of 1024 × 1024 pixels).

The number of nucleated basal and suprabasal cells per labeled clone was
counted under live acquisition mode. GFP-labeled clones were not scored due to
the difficulty of distinguishing them from the constitutive basal GFP expression
driven by the Lrig1 cassette. CFP, RFP, and YFP clones were pooled together for
further analysis (histograms (distributions) of basal-layer clone sizes and average
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Fig. 8 The single-progenitor model fits clone dynamics in different regions of skin epidermis. a–c Left panels: SP-model parameter inference on lineage
tracing data sets from paw epidermis11 using Axin2-creERTR26Rainbow animals (a), and ear32 and dorsal22 interfollicular epidermis in AhYFP mice (b and c,
respectively). Parameter estimates are obtained by MLE based on SP-model simulations constrained by the cell-cycle period distribution inferred from each
corresponding cell-proliferation analysis. Regions within the dashed gray lines fall consistent with the predicted ρ/r ratios from the linear scaling of the
average clone size. The total number of clones counted in each data set is displayed in the corresponding graph. Black bars are parameter estimates given
in the original publications shown, centre is the mid range and bars indicate the maximum and minimum plausible parameter values in simulations in each
paper (a, b, c). Right panels: Experimental Axin2- (a; from ref. 11) and Ah- (b and c; from refs. 32 and 22) derived basal-layer clone sizes (dots indicate mean
± standard error of proportion) give an excellent fit with the SP model with gamma-distributed cell-cycle times (lines; prediction from MLE). Dim dashed
lines: fits obtained with parameter estimates given in the original publications. Frequencies for each clone size (basal cell number) are shown in different
colors. See Supplementary Data 4 for goodness-of-fit statistics.
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number of basal cells). A total of 300, 315, 302, and 305 labeled clones from 3, 3, 6,
and 4 mice at 10, 30, 84, and 180 days post induction, respectively, were quantified.
Regarding the time courses in the number of clones per unit area and the
proportion of labeled basal cells, only RFP clones were considered given the low,
variable induction of the other florescent reporters and their overall small
contribution (including these numbers did not alter the conclusions).

Lineage-tracing data from Ah-creERT R26flEYFP derived clones in esophagus5,
ear32, and dorsal epidermis22 were obtained from experimental colleagues (data
available upon request). Data on induced Axin2-creERT R26Rainbow clones in
hindpaw11 and Lgr6-eGFPcreERT R26flConfetti in back epidermis33 were kindly
provided by the authors. Data from lineage tracing in scale and interscale tail
epidermis21 were accessed through the online publication material, while authors
were unable to provide original data from ref. 4. Data on Krt15-crePR1 R26mT/mG

mouse esophagus31 were retrieved by digitalizing Fig. 2e and Figure S3B from the
original publication. A similar procedure was used to extract Krt5tTA/pTRE-
H2BGFP-dilution data from back skin (Fig. 3 from ref. 20) and tail epidermis
(Fig. 3k from ref. 4).

Mathematical modeling and statistical inference. Model dynamics were simu-
lated using Markovian (Gillespie algorithm) and non-Markovian exact stochastic
Monte Carlo methods implemented in Matlab. A maximum likelihood estimation
(MLE) approach was followed for parameter inference, except when stated
otherwise, and best-fit parameters obtained with 95% confidence intervals based on
the likelihood-ratio test (alpha= 0.05). The coefficient of determination (R2) and
the standard error of the fit (S) were calculated for the evaluation of goodness of fit
(GoF). In those cases involving data at various time points, GoF values averaged
across the different time points (RT2 and ST) are displayed. A comprehensive list of
detailed R2 and S values can be found in Supplementary Data 4. For details of
theoretical modeling and computational methods used to infer cell behavior and
clonal dynamics, see Supplementary Methods section below.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the experimental data supporting the findings of this study are
available within the paper and its supplementary information files.

Code availability
Code used in computational modeling is available in Github: https://github.com/gp10/
Piedrafita_etal_SI_code/
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