5,561 research outputs found
A simplified treatment of SiB's land surface albedo parameterization
The earlier presented surface albedo parameterization is simplified by assuming that the reflectance of direct solar radiation is a simple function of solar zenith angle. The function chosen contains three parameters that vary with vegetation type, greenness, and leaf area index. Tables of parameter values are presented. Using these tables, SiB's (Simple Biosphere model) absorbances of direct solar radiation can be reproduced with an average relative error of less than 0.5 percent. Finally, the direct reflectance function is integrated over zenith angle to produce an equation for the surface reflectance of diffuse radiation
Phase Locking of the Boreal Summer Atmospheric Response to Dry Land Surface Anomalies in the Northern Hemisphere
Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the United States continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture-forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase-locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation
OXYGEN K
The O K spectra of these 3 products, at -160 Deg, show a prominent peak at 532 eV. In ice and solid MeOH, the principal peak occurs at 526 eV. The ice spectrum has also a well-defined subpeak at 520 eV; it is due to a transition from 1 of the MO. The main band and also the subpeak are broader in MeOH than in ice. The transition at 526 eV results from a 1b1 nonbonding orbital (2pp lone pair) and thus can be called an ionic transition. The O subband at 520 eV stems from a 1b2 bonding orbital (2ps type). The spectrum from solidified CO2 also shows 2 peaks, at 527 and 523 eV, the former one being an ionic peak. EtOH, PrOH, and BuOH yield spectra indistinguishable from that of MeOH
Tendency Bias Correction in Coupled and Uncoupled Global Climate Models with a Focus on Impacts over North America
We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the models climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphereocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summerlong-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill
Theory of spin-orbit coupling in bilayer graphene
Theory of spin-orbit coupling in bilayer graphene is presented. The
electronic band structure of the AB bilayer in the presence of spin-orbit
coupling and a transverse electric field is calculated from first-principles
using the linearized augmented plane wave method implemented in the WIEN2k
code. The first-principles results around the K points are fitted to a
tight-binding model. The main conclusion is that the spin-orbit effects in
bilayer graphene derive essentially from the single-layer spin-orbit coupling
which comes almost solely from the d orbitals. The intrinsic spin-orbit
splitting (anticrossing) around the K points is about 24\mu eV for the
low-energy valence and conduction bands, which are closest to the Fermi level,
similarly as in the single layer graphene. An applied transverse electric field
breaks space inversion symmetry and leads to an extrinsic (also called
Bychkov-Rashba) spin-orbit splitting. This splitting is usually linearly
proportional to the electric field. The peculiarity of graphene bilayer is that
the low-energy bands remain split by 24\mu eV independently of the applied
external field. The electric field, instead, opens a semiconducting band gap
separating these low-energy bands. The remaining two high-energy bands are
spin-split in proportion to the electric field; the proportionality coefficient
is given by the second intrinsic spin-orbit coupling, whose value is 20\mu eV.
All the band-structure effects and their spin splittings can be explained by
our tight-binding model, in which the spin-orbit Hamiltonian is derived from
symmetry considerations. The magnitudes of intra- and interlayer
couplings---their values are similar to the single-layer graphene ones---are
determined by fitting to first-principles results.Comment: 16 pages, 13 figures, 5 tables, typos corrected, published versio
- …