9 research outputs found

    Are Circadian cycles the dominant proteome rhythym in the intertidal mussel Mytilus californianus?

    Get PDF
    Mytilus californianus, also known as the California mussel, is a marine bivalve that is abundant along the West coast from Alaska to southern Baja California. They mainly reside in the upper-middle intertidal zone and cling to pier pilings and surf exposed rocks. They create multi-layered beds, which form a habitat for algae and many species of invertebrates. Intertidal mussels live in a naturally dynamic environment. It has previously been reported (Connor and Gracey, 2011) that the 24-hour circadian (day to night) rhythm of the intertidal mussel Mytilus californianus is primarily responsible for its rhythmic gene expression, as opposed to the 12.4-hour tidal cycles. Because tidal cycles challenge intertidal mussels through heat stress, salinity stress, hypoxia, and food availability, the dominance of the circadian cycle is surprising. However, transcriptomics may fail to detect up to half of the variation in the proteins that comprise the final functional phenotype of the organism. Using two-dimensional gel electrophoresis and mass spectrometry, we aimed to identify whether the proteome—the protein expression—of this organism also followed the same circadian rhythmic expression as its transcriptome

    MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma

    Get PDF
    The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma

    LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression

    No full text
    LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B-let-7-MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives
    corecore