310 research outputs found

    Liquefaction of Mine Tailings

    Get PDF
    Liquefaction of mine tailings is known to occur during cyclic, quasi-static & static loading cases but is still a relatively misunderstood concept because tailings dam failures continue to occur. In the worst case scenario the results are high costs, hindered public perception, environmental cleanup and worst of all, the loss of life. A better understanding of this issue is essential for any engineer associated with the mining and/or geotechnical industry, and in particular tailings dam construction and maintenance. This paper presents the liquefaction concept, some case histories dealing with failure of mine tailings dams, available testing methods and some dated and recent research conducted on liquefaction of mine tailings

    Accelerating the development of new solar absorbers by photoemission characterization coupled with density functional theory

    Get PDF
    The expectation to progress towards Terawatts production by solar technologies requires continuous development of new materials to improve efficiency and lower the cost of devices beyond what is currently available at industrial level. At the same time, the turnaround time to make the investment worthwhile is progressively shrinking. Whereas traditional absorbers have developed in a timeframe spanning decades, there is an expectation that emerging materials will be converted into industrially relevant reality in a much shorter timeframe. Thus, it becomes necessary to develop new approaches and techniques that could accelerate decision-making steps on whether further research on a material is worth pursuing or not. In this review, we will provide an overview of the photoemission characterization methods and theoretical approaches that have been developed in the past decades to accelerate the transfer of emerging solar absorbers into efficient devices

    In Situ ATR-SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode.

    Get PDF
    Illumination of a voltage-biased plasmonic Ag cathode during CO2 reduction results in a suppression of the H2 evolution reaction while enhancing CO2 reduction. This effect has been shown to be photonic rather than thermal, but the exact plasmonic mechanism is unknown. Here, we conduct an in situ ATR-SEIRAS (attenuated total reflectance-surface-enhanced infrared absorption spectroscopy) study of a sputtered thin film Ag cathode on a Ge ATR crystal in CO2-saturated 0.1 M KHCO3 over a range of potentials under both dark and illuminated (365 nm, 125 mW cm-2) conditions to elucidate the nature of this plasmonic enhancement. We find that the onset potential of CO2 reduction to adsorbed CO on the Ag surface is -0.25 VRHE and is identical in the light and the dark. As the production of gaseous CO is detected in the light near this onset potential but is not observed in the dark until -0.5 VRHE, we conclude that the light must be assisting the desorption of CO from the surface. Furthermore, the HCO3- wavenumber and peak area increase immediately upon illumination, precluding a thermal effect. We propose that the enhanced local electric field that results from the localized surface plasmon resonance (LSPR) is strengthening the HCO3- bond, further increasing the local pH. This would account for the decrease in H2 formation and increase the CO2 reduction products in the light

    Nanoliter-scale, regenerable ion sensor: Sensing with surface functionalized microstructured optical fiber

    Get PDF
    Femtosecond laser written Bragg gratings have been written in exposed-core microstructured optical fibers with core diameters ranging from 2.7 μm to 12.5 μm and can be spliced to conventional single mode fiber. Writing a Bragg grating on an open core fiber allows for real-time refractive index based sensing, with a view to multiplexed biosensing. Smaller core fibers are shown both experimentally and theoretically to provide a higher sensitivity. A 7.5 μm core diameter fiber is shown to provide a good compromise between sensitivity and practicality and was used for monitoring the deposition of polyelectrolyte layers, an important first step in developing a biosensor.Sabrina Heng, Mai-Chi Nguyen, Roman Kostecki, Tanya M. Monro and Andrew D. Abellhttp://spie.org/app/program/index.cfm?fuseaction=conferencedetail&conference_id=1081415&event_id=102223
    • …
    corecore