
 

PUBLISHED VERSION  

Sabrina Heng, Mai-Chi Nguyen, Roman Kostecki, Tanya M. Monro and Andrew D. Abell 
Nanoliter-scale, regenerable ion sensor: Sensing with surface functionalized 
microstructured optical fiber 
Optical Sensors 2013 / F. Baldini, J. Homola, R. A. Lieberman (eds.): Paper 877403 
 
© 2013 SPIE 
 
© Copyright 2013 Society of Photo-Optical Instrumentation Engineers. One print or 
electronic copy may be made for personal use only. Systematic reproduction and 
distribution, duplication of any material in this paper for a fee or for commercial purposes, or 
modification of the content of the paper are prohibited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/80076  

PERMISSIONS 

http://spie.org/Documents/Publications/JournalsCopyrightTransfer.pdf 
 
Authors, or their employers in the case of works made for hire, retain the following rights: 
1. All proprietary rights other than copyright, including patent rights. 
2. The right to make and distribute copies of the Paper for internal purposes. 
3. The right to use the material for lecture or classroom purposes. 
4. The right to prepare derivative publications based on the Paper, including books or book chapters, journal papers, 
and magazine articles, provided that publication of a derivative work occurs subsequent to the official date of 
publication by SPIE. 
5. The right to post an author-prepared version or an official version (preferred version) of the published paper on an 
internal or external server controlled exclusively by the author/employer, provided that (a) such posting is 
noncommercial in nature and the paper is made available to users without charge; (b) a copyright notice and full 
citation appear with the paper, and (c) a link to SPIE’s official online version of the abstract is provided using the DOI 
(Document Object Identifier) link. 
 
Citation format: 
Author(s), “Paper Title,” Publication Title, Editors, Volume (Issue) Number, Article (or Page) Number, (Year). 
 
Copyright notice format: 
Copyright XXXX (year) Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be 
made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a 
fee or for commercial purposes, or modification of the content of the paper are prohibited. 
 

3 March 2015 

 

 

 

         

http://hdl.handle.net/2440/80076
http://spie.org/Documents/Publications/JournalsCopyrightTransfer.pdf


�

�

Nanoliter-scale, Regenerable Ion Sensor: Sensing with Surface 
Functionalized Microstructured Optical Fiber 

Sabrina Heng,* Mai-Chi Nguyen, Roman Kostecki, Tanya M. Monro and Andrew D. Abell. 
Institute for Photonics & Advanced Sensing and School of Chemistry & Physics, The University of Adelaide, 

Adelaide, South Australia 5005, Australia 
 

*Corresponding author: Tel: +61 8 8313 36694; Fax: +61 8 8313 4380 

Email address: sabrina.heng@adelaide.edu.au (S. Heng) 

 

ABSTRACT 

The first nanoliter-scale regenerable ion sensor based on microstructured optical fiber (MOF) is reported. The air holes of 
the MOF are functionalized with a monoazacrown bearing spiropyran to give a switchable sensor that detects lithium 
ions down to 100 nM in nanoliter-scale volumes. Ion binding is turned on and off on upon irradiation with light, with the 
sensor being unaffected by multiple rounds of photoswitching. Unbound ions are flushed from the fiber in the \off] state 
to allow the sensor to be reused. The integration of an ionophore into the sensor paves the way for the development of 
highly specific light-based sensing platforms that are readily adaptable to sense a particular ion simply by altering the 
ionophore design. 

 

1. INTRODUCTION 

With the advent of advanced medicine, early disease diagnosis often translates into better prognosis and treatment 
plans.[1-4] Given the intricate relationship between metal ions and human health,[5,6] there is a real need to develop new 
metal ion sensors that are user friendly, easily deployed, give rapid response and are affordable.[7] One important 
advance in this context would be to develop sensors that are reusable and/or capable of continuous or repeated 
measurements. Such a reusable sensor would maintain the sensing surface in a passive state, in-between measurements 
and switch to an active state under an external stimulus only when a measurement is required. When the measurement is 
completed, the target species would be expelled by a selected external stimulus, with the surface once again returning to 
its inactive form. This \switchable] property makes it possible to return the sensing surface to its original state after a 
measurement is made, thereby potentially extending the sensor]s useful lifetime.[8] Such sensors would allow for 
multiple measurements to be made on a single sample without the need to change the sensor.  This may offer some 
advantage in remote applications and also in biochemical studies. Despite these needs and associated opportunity, little 
work has been done in this area. 
 
The most basic switchable metal ion sensor of this type would consist of a molecular switch combined with a sensing 
platform that would ideally allow detection within nanoliter-samples.  A suitable external stimulus (e.g. light) would 
change or switch the structure and properties of the sensing platform in a non-invasive and reversible manner. 
 

The use of an optical fiber as the sensing platform in this context offers attractive characteristics such as low loss, high 
bandwidth, immunity to electromagnetic interference, small size, light weight, safety, relatively low cost, low 
maintenance, that make them very suitable and, in some cases, the only viable sensing solution.[9] Microstructured 
optical fibers (MOFs) offer the potential to improve performance relative to more traditional spectroscopic and 
fluorescence-based fiber sensors.[10] MOFs have air holes incorporated within their cross-section and these holes can be 
used to control the interactions between guided light and matter located within the holes while simultaneously acting as 

!"#$%&'()*+,-.,(/0123(*4$#*4(56(7.&+%*,%-(8&'4$+$3(9$.$(:-;-'&3(
<-5*.#(=>(?$*5*.;&+3(@.-%>(-A()@BC(D-'>(EFFG3(EFFG02(H(I(/012(
)@BC(JJJ(%-4*K(0/FFLFEMNO12OP1E(H(4-$K(10>111FO1/>/01MQ10

@.-%>(-A()@BC(D-'>(EFFG((EFFG02L1



�

�

tiny sample chambers.[11,12] The amount of guided light that is available to interact with the material located within the 
holes of MOFs can be increased by manipulating the geometry of the fiber cross-section.[11,12] With appropriate design, 
the cross-sectional structure of a MOF provides the broad range of optical properties demanded by different sensors. 
These characteristics have allowed MOFs to be used as sensing platforms for a variety of chemical and biological 
substrates.[13-15] In addition, integrating a photoswitchable molecule with MOFs as the sensor surface also means that 
light can also be used to quantify the binding of analytes via absorption, fluorescence or label-free techniques. 

From the plethora of photoswitchable molecules that are known, spiropyrans stand out as attractive candidates for sensor 
development for several reasons. Spiropyrans are characterized by two spectrally well-separated states that are thermally 
stable, high switching reliability, low fatigue to maximize the number of switching cycles the molecules can survive, and 
tunable switching rates.[16,17] Importantly, spiropyran undergoes a reversible structural isomerization between a colorless 
spiro (SP) form and a colored open form (merocyanine or MC) on irradiation with UV light and vice versa with visible 
light or heat (Figure 1).[18,19] This substantial change in color between the two forms is due to the unavailability of the 
electron lone pair of the phenolate oxygen in MC, which contributes to the charge delocalization in the zwitterionic MC 
species. 
 

 
Figure 1. Structures of spiropyran (SP, closed) and merocyanine (MC, opened). 

 
A basic spiropyran structure can be readily functionalized with a suitable metal-binding site to provide an opportunity to 
affect light-induced release of the metal ion to generate a re-generable sensing system. Indeed spiropyran-based 
chemosensory systems for the detection of alkali and alkaline earth, lanthanides, transition and non-transition metals 
have been reported.[20],[21] In particular, crowned spiropyrans have been developed as chemosensors for alkali metal ions, 
in which the metal ion binding in the crown ether moiety induces a large spectral change accompanied by isomerization 
to the merocyanine form. [22,23]  
  
In this work we report the design, synthesis and operation of a novel photo-responsive, regenerable ion sensor for the 
detection of lithium ions (Sensor-1).  Here, we chemically modified a known monoazacrown bearing spiropyran (SP1, 
Scheme 1) to enable it to be attached covalently to the glass surfaces inside the air holes of MOFs. When the optical 
fibers have been surface functionalized with SP1, the operation of the sensor was investigated through several key 
characteristics such as the minimum concentration of lithium ions detectable, photoswitching and sensor re-use. While 
various surface functionalized spiropyrans have been reported,[24-27] this study is the first demonstration of a surface 
functionalized spiropyran derivative with an ionophore attached to the molecular switch. Prior to this work, the ion 
sensing ability of surface functionalized spiropyran mainly relied on the metal chelating ability of the molecular switch 
during the SP to MC transition.[24,25,28] The integration of an ionophore to the sensor paves the way for the development 
of highly specific light-based sensing platforms that can be readily adapted to sense specific ions just by altering the 
ionophore design.  In addition, this also represents the first reversible molecular switch that is functionalized within an 
optical fiber system. This integration of SP1 and MOF results in a nanoliter-scale, light-driven ion sensor that can be 
turned on and off on demand in order to overcome the problem of a one-time use sensor. 
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2. RESULTS AND DISCUSSION 
 
2.1  Synthesis of SP1 

The synthesis of SP1 with a monoazacrown moiety at the 8-position is based on the condensation of compounds 3 and 6 
as shown in Scheme 1.  The key indole 3 was synthesized in two steps according to literature.[29] In particular, reaction of 
4-hydrazinobenzoic acid (1) with isopropylmethylketone, followed by methylation with methyl iodide gave the desired 
product. The crowned nitrosalicylaldehyde (6) was obtained in two steps by the chloromethylation of 5-
nitrosalicyladehyde (4), in the presence of aluminum chloride, followed by reaction with 1-aza-15-crown-5 gave (6).   
Subsequent condensation of (3) with (6) in ethanol under reflux gave SP1. 

 

Scheme 1 Reagents and conditions: i, 2-methyl-2-butanone, conc. H2SO4, EtOH, reflux, 12 h; ii, methyl iodide, toluene:acetonitrile 
2:1, reflux, 14 h; iii, chloromethyl methyl ether, aluminum chloride, rt, 1 h then reflux, 2 h; iv, 1-aza-15-crown-5, Et3N, THF, 0 °C - rt, 
14 h then reflux 3 h; v, EtOH, reflux, 3 h. 
 

2.2  Microstructured Optical Fiber Experiments 
The MOF used for this study was fabricated in-house from undoped high purity fused silica, using the cane and jacket 
method[30] in combination with the process described by Kostecki et al.[31] Silica is ideal for this work as it has high 
transmission properties in the UV-Vis-NIR spectral range.[32,33] 
 

A single 80 m length of polymer coated (n = 1.54) fiber was fabricated and the dimensions of this fiber were measured 
using cross-sectional images from a scanning electron microscope (SEM). Figure 2a shows the overall MOF structure 
with the coating removed, having an outside diameter of 270 µm. An enlargement of the core and holes region in the 
center of the fiber (with structure known as a wagon wheel fiber) is shown in Figure 2b, where the core of the fiber is the 
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Photobleaching experiments were carried out by subjecting the SP1 absorbed within the holes of the MOF to multiple 
exposures of the 532 nm laser (10 x 16 ms, Figure 6a, 10 x 32 ms and 10 x 1 s, not shown). As apparent in Figure 4a, 
photobleaching was not observed for 10 x 16 ms of exposure, however photobleaching to approximately 60 % 
fluorescence intensity was observed after 10 cycles of exposure to the laser at 1 s per exposure. Given that SP1 was 
found to be robust and less prone to bleaching under these conditions, the time span of light-exposure to the 532 nm laser 
for all subsequent experiments were maintained at 10 x 16 ms. 
 
Photobleaching experiments were also performed on two other common photoswitches namely the diarylalkenes and 
indolefulgides.  As shown in Figure 4b and c, the diarylalkene analog showed photobleaching under the same 
experimental conditions while the indolefulgide remained stable, making latter class of compounds potentially useful for 
creating reusable sensors.  
 
 

2.4  Surface functionalization of MOF with SP1 
As mentioned previously, for the sensor to function as a regenerable ion sensor the molecular switch (SP1) must be 
covalently attached to the internal surface of the MOF. This then renders the sensing surface photo-responsive.  
 
It is important that this methodology is reliable, repeatable, and capable of withstanding the conditions employed during 
ion binding and photoswitching. To do this, fibers were sealed into a metal chamber and the solutions were forced 
through the fiber via positive pressure using nitrogen gas. The fibers were coated with 5% APTES in toluene (w/w) for 2 
h at 100 psi.[35,36] The next step usually involves pre-mixing the COOH-bearing molecule with excess coupling reagents 
(EDC/NHS) before applying the entire mixture to the amine-terminated silane surface. However, this approach is 
problematic in that it is hard to quantify the number of molecules that have been activated and are available to react with 
the surface.  Secondly, long washing times are usually required to ensure that excess coupling reagents and by-products 
are completely flushed from the fiber. To eliminate having to perform the coupling reaction on the surface, SP1 bearing 
a reactive succinimidyl ester moiety, for subsequent surface attachment, was first synthesized according to Scheme 2.  
SP1 was reacted with N-hydroxysuccinimide (NHS)[37] in the presence of N,N'-diisopropylcarbodiimide (DIC) at room 
temperature to give SP1-NHS in 70 % yield. 
 
The fibers were then rinsed in preparation for coating with synthetic SP1-NHS. The fibers were prepare for coating by 
first flushing with toluene for 20 min, followed by drying with nitrogen for 20 min, a further flush with millipore water 
for 20 min and a final flush with nitrogen for 30 min. The fibers were then coated with a solution of SP1-NHS in 
acetonitrile (2 mM) for 2 h, and were flushed with acetonitrile, air and water for 20 min respectively. In all of the above 
steps, 100 psi of pressure was used, and the ends of the fibers were visually checked to ensure that the liquid/gas was 
flowing through. 

 
Scheme 2 Reagents and conditions: i, N-hydroxysuccinimide, N,N'-Diisopropylcarbodiimide, THF, rt, 18 h. 
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