6 research outputs found

    The cAMP response element binding protein (CREB) as an integrative HUB selector in metazoans: clues from the hydra model system

    No full text
    In eukaryotic cells, a multiplicity of extra-cellular signals can activate a unique signal transduction system that at the nuclear level will turn on a variety of target genes, eliciting thus diverse responses adapted to the initial signal. How distinct signals can converge on a unique signalling pathway that will nevertheless produce signal-specific responses provides a theoretical paradox that can be traced back early in evolution. In bilaterians, the CREB pathway connects diverse extra-cellular signals via cytoplasmic kinases to the CREB transcription factor and the CBP co-activator, regulating according to the context, cell survival, cell proliferation, cell differentiation, pro-apoptosis, long-term memory, hence achieving a "hub" function for cellular and developmental processes. In hydra, the CREB pathway is highly conserved and activated during early head regeneration through RSK-dependent CREB phosphorylation. We show here that the CREB transcription factor and the RSK kinase are co-expressed in all three hydra cell lineages including dividing interstitial stem cells, proliferating nematoblasts, proliferating spermatogonia and spermatocytes, differentiating and mature neurons as well as ectodermal and endodermal myoepithelial cells. In addition, CREB gene expression is specifically up-regulated during early regeneration and early budding. When the CREB function was chemically prevented, the early post-amputation induction of the HyBraI gene was no longer observed and head regeneration was stacked. Thus, in hydra, the CREB pathway appears already involved in multiple tasks, such as reactivation of developmental programs in an adult context, self-renewal of stem cells, proliferation of progenitors and neurogenesis. Consequently, the hub function played by the CREB pathway was established early in animal evolution and might have contributed to the formation of an efficient oral pole through the integration of the neurogenic and patterning functions

    Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype

    No full text
    In hydra, the endodermal epithelial cells carry out the digestive function together with the gland cells that produce zymogens and express the evolutionarily conserved gene Kazal1. To assess the hydra Kazal1 function, we silenced gene expression through double-stranded RNA feeding. A progressive Kazal1 silencing affected homeostatic conditions as evidenced by the low budding rate and the induced animal death. Concomitantly, a dramatic disorganization followed by a massive death of gland cells was observed, whereas the cytoplasm of digestive cells became highly vacuolated. The presence of mitochondria and late endosomes within those vacuoles assigned them as autophagosomes. The enhanced Kazal1 expression in regenerating tips was strongly diminished in Kazal1(-) hydra, and the amputation stress led to an immediate disorganization of the gland cells, vacuolization of the digestive cells and death after prolonged silencing. This first cellular phenotype resulting from a gene knock-down in cnidarians suggests that the Kazal1 serine-protease-inhibitor activity is required to prevent excessive autophagy in intact hydra and to exert a cytoprotective function to survive the amputation stress. Interestingly, these functions parallel the pancreatic autophagy phenotype observed upon mutation within the Kazal domain of the SPINK1 and SPINK3 genes in human and mice, respectively

    Consortium high level timelines/activities.

    No full text
    <p>1. Siberian State Medical University, Tomsk, Russian Federation, 2. Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands, 3. Department of Parasitology and Leiden Parasite Immunology Group, Leiden University Medical Center, Leiden, the Netherlands, 4. George Washington University Medical Center, United States, 5. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 6. Institute of Tropical Medicine, University of Tübingen, Germany, 7. Khon Kaen University, Khon Kaen, Thailand, 8. Pfizer LLC, Moscow, Russian Federation, 9. ReMedys Foundation, Geneva, Switzerland, 10. Royal Brompton Hospital, United Kingdom; Research Institute for Medical Genetics, Tomsk, Russian Federation, 11. Swiss Tropical and Public Health Institute, Basel, Switzerland.</p
    corecore