88 research outputs found

    Peripheral Immune Cell Gene Expression Predicts Survival of Patients with Non-Small Cell Lung Cancer

    Get PDF
    Prediction of cancer recurrence in patients with non-small cell lung cancer (NSCLC) currently relies on the assessment of clinical characteristics including age, tumor stage, and smoking history. A better prediction of early stage cancer patients with poorer survival and late stage patients with better survival is needed to design patient-tailored treatment protocols. We analyzed gene expression in RNA from peripheral blood mononuclear cells (PBMC) of NSCLC patients to identify signatures predictive of overall patient survival. We find that PBMC gene expression patterns from NSCLC patients, like patterns from tumors, have information predictive of patient outcomes. We identify and validate a 26 gene prognostic panel that is independent of clinical stage. Many additional prognostic genes are specific to myeloid cells and are more highly expressed in patients with shorter survival. We also observe that significant numbers of prognostic genes change expression levels in PBMC collected after tumor resection. These post-surgery gene expression profiles may provide a means to re-evaluate prognosis over time. These studies further suggest that patient outcomes are not solely determined by tumor gene expression profiles but can also be influenced by the immune response as reflected in peripheral immune cells

    BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer

    Get PDF
    © 2017 The Author(s) PARP inhibition is known to be an effective clinical strategy in BRCA mutant cancers, but PARP inhibition has not been applied to BRCA-proficient tumors. Here, we show the synergy of BET bromodomain inhibition with PARP inhibition in BRCA-proficient ovarian cancers due to mitotic catastrophe. Treatment of BRCA-proficient ovarian cancer cells with the BET inhibitor JQ1 downregulated the G2-M cell-cycle checkpoint regulator WEE1 and the DNA-damage response factor TOPBP1. Combining PARP inhibitor Olaparib with the BET inhibitor, we observed a synergistic increase in DNA damage and checkpoint defects, which allowed cells to enter mitosis despite the accumulation of DNA damage, ultimately causing mitotic catastrophe. Moreover, JQ1 and Olaparib showed synergistic suppression of growth of BRCA-proficient cancer in vivo in a xenograft ovarian cancer mouse model. Our findings indicate that a combination of BET inhibitor and PARP inhibitor represents a potential therapeutic strategy for BRCA-proficient cancers. Karakashev et al. show synergy of BET bromodomain inhibition with PARP inhibition in BRCA-proficient ovarian cancers. This combination of inhibitors can synergistically increase DNA damage and cell-cycle checkpoint defects, which allows cells to enter mitosis despite the accumulation of DNA damage, ultimately causing mitotic catastrophe

    SWI/SNF catalytic subunits’ switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells

    Get PDF
    © 2018, The Author(s). Inactivation of the subunits of SWI/SNF complex such as ARID1A is synthetically lethal with inhibition of EZH2 activity. However, mechanisms of de novo resistance to EZH2 inhibitors in cancers with inactivating SWI/SNF mutations are unknown. Here we show that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 drives resistance to EZH2 inhibitors in ARID1A-mutated cells. SMARCA4 loss upregulates anti-apoptotic genes in the EZH2 inhibitor-resistant cells. EZH2 inhibitor-resistant ARID1A-mutated cells are hypersensitive to BCL2 inhibitors such as ABT263. ABT263 is sufficient to overcome resistance to an EZH2 inhibitor. In addition, ABT263 synergizes with an EZH2 inhibitor in vivo in ARID1A-inactivated ovarian tumor mouse models. Together, these data establish that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 underlies the acquired resistance to EZH2 inhibitors. They suggest BCL2 inhibition alone or in combination with EZH2 inhibition represents urgently needed therapeutic strategy for ARID1A-mutated cancers

    Algebraic Comparison of Partial Lists in Bioinformatics

    Get PDF
    The outcome of a functional genomics pipeline is usually a partial list of genomic features, ranked by their relevance in modelling biological phenotype in terms of a classification or regression model. Due to resampling protocols or just within a meta-analysis comparison, instead of one list it is often the case that sets of alternative feature lists (possibly of different lengths) are obtained. Here we introduce a method, based on the algebraic theory of symmetric groups, for studying the variability between lists ("list stability") in the case of lists of unequal length. We provide algorithms evaluating stability for lists embedded in the full feature set or just limited to the features occurring in the partial lists. The method is demonstrated first on synthetic data in a gene filtering task and then for finding gene profiles on a recent prostate cancer dataset

    HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci

    Get PDF
    Cellular senescence is a stable cell growth arrest that is characterized by the silencing of proliferation-promoting genes through compaction of chromosomes into senescence-associated heterochromatin foci (SAHF). Paradoxically, senescence is also accompanied by increased transcription of certain genes encoding for secreted factors such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). How SASP genes are excluded from SAHF-mediated global gene silencing remains unclear. In this study, we report that high mobility group box 2 (HMGB2) orchestrates the chromatin landscape of SASP gene loci. HMGB2 preferentially localizes to SASP gene loci during senescence. Loss of HMGB2 during senescence blunts SASP gene expression by allowing for spreading of repressive heterochromatin into SASP gene loci. This correlates with incorporation of SASP gene loci into SAHF. Our results establish HMGB2 as a novel master regulator that orchestrates SASP through prevention of heterochromatin spreading to allow for exclusion of SASP gene loci from a global heterochromatin environment during senescence

    An African-Specific Variant of TP53 Reveals PADI4 as a Regulator of p53-Mediated Tumor Suppression

    Get PDF
    TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53–PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. Significance: We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy

    Small extracellular vesicle-mediated ITGB6 siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells

    Get PDF
    The αVβ6 integrin, an epithelial-specific cell surface receptor absent in normal prostate and expressed during prostate cancer (PrCa) progression, is a therapeutic target in many cancers. Here, we report that transcript levels of ITGB6 (encoding the β6 integrin subunit) are significantly increased in metastatic castrate-resistant androgen receptor-negative prostate tumors compared to androgen receptor-positive prostate tumors. In addition, the αVβ6 integrin protein levels are significantly elevated in androgen receptor-negative PrCa patient derived xenografts (PDXs) compared to androgen receptor-positive PDXs. In vitro, the androgen receptor-negative PrCa cells express high levels of the αVβ6 integrin compared to androgen receptor-positive PrCa cells. Additionally, expression of androgen receptor (wild type or variant 7) in androgen receptor-negative PrCa cells downregulates the expression of the β6 but not αV subunit compared to control cells. We demonstrate an efficient strategy to therapeutically target the αVβ6 integrin during PrCa progression by using short interfering RNA (siRNA) loaded into PrCa cell-derived small extracellular vesicles (sEVs). We first demonstrate that fluorescently-labeled siRNAs can be efficiently loaded into PrCa cell-derived sEVs by electroporation. By confocal microscopy, we show efficient internalization of these siRNA-loaded sEVs into PrCa cells. We show that sEV-mediated delivery of ITGB6-targeting siRNAs into PC3 cells specifically downregulates expression of the β6 subunit. Furthermore, treatment with sEVs encapsulating ITGB6 siRNA significantly reduces cell adhesion and migration of PrCa cells on an αVβ6-specific substrate, LAP-TGFβ1. Our results demonstrate an approach for specific targeting of the αVβ6 integrin in PrCa cells using sEVs encapsulating ITGB6-specific siRNAs
    • …
    corecore