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Abstract: Prediction of unexpected, toxic effects of compounds is a key challenge in

computational toxicology. Machine learning based toxicogenomic modelling opens up a

systematic means for genomics-driven prediction of toxicity, which has the potential also to

unravel novel mechanistic processes that can help to identify underlying links between the

molecular makeup of the cells and their toxicological outcomes. This chapter describes the recent

big-data and machine learning-driven computational methods and tools that enable one to address

these key challenges in computational toxicogenomics, with a particular focus on matrix and tensor

factorization approaches. Here we describe these approaches by using exemplar application of a

dataset comprising over 2.5 × 108 data points and 1300 compounds, with the aim of explaining

dose-dependent cytotoxic effects by identifying hidden factors/patterns captured in

transcriptomics data with links to structural fingerprints of the compounds. Together

transcriptomics and structural data are able to predict pathological states in liver and drug toxicity.

Key words: Machine Learning, Group Factor Analysis, Tensor Factorization, Bayesian

Modelling, Drug Sensitivity, Connectivity Map, NCI-60, Gene expression, Biomarkers;



3

1. Introduction

Cellular responses to drugs and other chemical compounds are increasingly being

measured at multiple levels of detail and resolution. For instance, ex-vivo toxicity measurements

summarize the phenotypic responses in human primary cells [1][2], while profiling of genome-

wide transcriptomic responses opens up a systems-level view to the compounds’ mode-of-action

(MoA) mechanisms. The study of relationships between genome-wide genomic or molecular

responses of the cells to exposure to substances and the corresponding toxicological outcomes is

referred to as toxicogenomics. Understanding these complex relationships can not only identify

the molecular mechanisms behind toxicity but also suggest ways to avoid toxic effects in medical

or other applications [3].  Toxicogenomics may be especially pertinent for analyzing data from

cellular assays, and for reducing and eventually replacing the use of animal experiments for

toxicity testing during drug development, also referred to as 3R approaches [3][4][6].  The

reductions in the costs of genomics and transcriptomic assays are enabling factors towards 3R as

well [6][8].

In vitro toxicological outcomes are often based on large-scale compound response

profiles, which summarize the responses in a particular cell context. For instance, NCI-60

developmental therapeutics program uses several metrics to quantify dose-responses to a library

of thousands of compounds across a panel of 59 human tumor cell lines; such summary metrics

include: GI50 (50% Growth Inhibition), TGI (Total Growth Inhibition) and LC50 (50% Lethal

Concentration) (https://dtp.cancer.gov/discovery_development/nci-60/).  In such a high-

throughput setting, the computational task is to search for patterns of toxicity outcomes in

correlation with genomic and molecular profiles of the same panel of cell lines.  However,

cytotoxicity is not a biologically uniform response. Cells use multiple mechanisms that depend
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on the chemical or drug and the dose at which it is applied to respond to and counter the effects

of stressors. Transcriptomic profiling and subsequent analyses using component modelling

approaches discussed herein can segment these responses into biologically intelligible and

explainable sub-responses, while also providing predictive models.

Therefore, advances in machine learning methodology allow study of toxicogenomic

relationships in a more systematic fashion and reveal valuable drug-gene associations. For

instance, community efforts have shown great promise to improve in-silico predictions of drug

sensitivity [9]. In another effort, [10] carried out a personalized quantitative structure activity

relationship QSAR analysis by integrating gene expression, drug structures and drug response

profiles using a non-linear machine learning approach. Their study demonstrated the possibility

to predict the drug sensitivity outcome for untested drugs even in new cell-types. Drug-pathway

associations can be identified using advanced machine learning methodologies that model the

complex molecular interactions [11]. Recently, integrative multi-task sparse regression methods

have been used to systematically identify biomarker-combinations for predicting drug outcomes

[12]. Increasing evidence from recent studies thus poses the hypothesis that common patterns in

the activity profiles of genes and sensitivity/toxicity profiles of drugs can identify cellular

response mechanisms and could be used even in predicting the tissue type or cell context-specific

toxicity outcome of drug treatment.

This Chapter is organized as follows: Section 2 introduces representative classes of recent

machine learning methods, with a specific emphasis on the matrix and tensor factorization

methods. Section 3 demonstrates the application of these methods to identification of

toxicogenomic relationships in example case studies, followed by a discussion in Section 4.
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Section 5 concludes the Chapter with current limitations and future directions in these

developments.

2. Machine learning methods

Machine learning algorithms search for patterns in data to extract useful information

[13][14]. These algorithms learn a representation a.k.a. the model from existing data samples and

then utilize the model in different tasks. When applied to experimental data, the model

formulation and learning processes take into account various different forms of inherent noise

and corruptions in the measurements to learn a cleaner representation of the data. In

toxicogenomics, similar to many other real-life applications, data is expected to be noisy, high

dimensional, contain missing values, and may also include correlated variables, which all make

direct analysis complicated [15]. In such cases, the key feature of machine learning is to identify

a low-dimensional, hidden representation that captures and summarizes the relevant information

for the toxicogenomic modelling task. These summaries can then be used to understand the

compound’s MoA and/or predict the cellular outcomes of the drugs in different cell contexts.

2.1 Matrix Factorization

In machine learning, matrix factorization (MF) is a well-established approach to

summarize a dataset through unobserved features that explain why some parts of the data are

similar. MF has applications in broad range of scientific domains, and it is widely used in several

applications, including prediction of missing values, dimensionality reduction, as well as data

visualization [16][17]. This wide applicability comes from the assumption that MF can be seen

as a means of describing the underlying processes which generated the data. Specifically, MF
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assumes that measurements have been produced by a combination of a number of latent

processes and aims to identify the factors (a.k.a. components) that describe these processes. Fig.

4.1 shows a visual illustration of matrix factorization, where a matrix  is factorized into distinct

low-dimensional components. This component decomposition is valuable for many applications,

as the different components can be related to separate mechanisms that may have contributed to

the data. Several matrix factorization methods have been proposed for various applications,

including Factor Analysis (FA), Principal Component Analysis (PCA) and Latent Dirichlet

Allocation (LDA, see 2.2) [18][20]. While FA and PCA are designed for continuous data sets,

LDA is formulated for discrete datasets.

Fig. 4.1: Visual representation of matrix factorization. The data matrix X is factorized into low-dimensional matrices
Z and W that capture the key statistical patterns in the data.

2.2. Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA, [20][21]) is a probabilistic formulation of

factorization for discrete data sets. Formally, it is a three-level hierarchical Bayesian model that

models the probabilities of each input feature to appear in each component. The Dirichlet

distribution is a multivariate probability distribution used in LDA to mitigate overfitting and to

help LDA to achieve its generalizability beyond the training data. LDA has demonstrated wide

applicability in natural language processing, as text data sets can directly be encoded as discrete

variables [22][24] as well as in genomic data sets [25][27].
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2.3. Group Factor Analysis

Group Factor Analysis (GFA, [28][30]) is a recent machine learning method designed to

capture relationships between multiple datasets. GFA models the relationships as statistical

dependencies by reducing multiple data sets (also known as views) to learn a joint low-

dimensional representation. The joint representation of the datasets is characterized by

components that may be active in one or several of the data views as shown in Fig. 4.2. An active

component captures underlying relationships between the views in which it is active. For

example, the active component of all views captures a common dependency structure between all

views, while a component active only in a single view identifies the variance and features unique

to that particular view only. GFA learns the components and their activity patterns in a truly

data-driven fashion, making it possible to comprehensively capture the interdependencies

between all the data views. An easy to use implementation of GFA has been made freely

available as an R-package [31].

Formally, for a given collection of M datasets ( ) ∈ ℛ  ×  where m = 1… M, having

N paired samples and Dm dimensions, GFA learns a joint low-dimensional factorization of the M

matrices. The model is formulated as a product of the Gaussian latent variable matrix ∈ ℛ  ×

(containing the K components) and view-specific projection weights ( ) ∈ ℛ  × :

( ) ~ ( )z ,∑( ) ,

~ (0, )

w ,
( ) ~ ℎ , 0, ( ,

( )) + (1 − ℎ , )

ℎ , ~ ( )
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~ ( , )

,
( ) ~ ( , )

Here, ∑( ) is a diagonal noise covariance matrix. The latent variable  are common

between all the views and capture the response patterns. The projection matrices :,
( ) are

specific to each view and translate the dependency patterns across views.

Fig. 4.2: Visual representation of Group Factor Analysis. GFA factorizes a set of data matrices X(1), X(2).. X(m), into
their joint low dimensional factors Z. The factors can be active in one or more data matrices through the projection
matrices W(1), W(2).. W(m). The W’s are learned to hold a group-wise sparse structure that models the dependency
patterns across the data matrices. The sparsity is illustrated by white color which represents zero weights, while

shaded color represents non-zero values in the figure.

GFA achieves the joint factorization by assuming that the projections :,
( ) are group-

wise sparse. The group sparse projections :,
( ) capture both group-specific variations (activity

displayed only in one view) as well as dependencies between multiple groups (activity in more
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than one view). The sparsity is implemented in two layers through a group-wise group spike and

slab prior formulation using Beta-Bernoulli distribution [30] and an element-wise normal-

Gamma Automatic Relevance Determination (ARD) [32]. As a result, the project matrices ( )

are both group and feature-wise sparse, which is compatible with the biological assumptions of

targeted action mechanisms making the results easier to interpret.

2.4. Tensor Factorization

A tensor is a multidimensional array  ∈ ℛ   × ×… × and a generalization of matrices

and vectors to higher order spaces. Tensors are therefore useful for representing data that has

more than two dimensions. Such representation allows investigation of relationships that span

multidimensional constructs. Mathematically, a tensor is also commonly defined as an element

of space induced by the tensor product of vector spaces.

In order to capture the highly-structured patterns of a multidimensional data set, tensor

methods employ constrained formulations that help to avoid the overfitting problem [33]. A key

characteristic of these tensor formulations is that they have fewer parameters than their matrix

counterparts. Analogous to matrix factorizations presented in Section 2.2, there exists several

tensor factorization methods that can be used to discover underlying dependencies in the data

[33]. CANDECOMP/PARAFAC (CP; [34][35]) and Tucker family [36] are the most widely

used tensor decomposition methods. The interested reader is referred to [33] for a comprehensive

review of various tensor factorization methods.

Tensor factorizations have obtained significant success in a large number of domains,

including chemometrics, psychometrics, bioinformatics, and have shown immense promise for

advanced applications in toxicology and toxicogenomics. For example, tensor factorization has
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been used to explore stimuli-variant gene expression patterns [37], as well as in integrating

phenotypic responses from multiple studies [38][39], modeling dependencies between metabolic

and gene expression networks [40], as well as in joint QSAR and toxicogenomic analysis

[41][42].

CP factorization, also known as the canonical decomposition or parallel factor analysis

[34][35], is the most widely used tensor factorization method. CP is a natural extension of matrix

factorization to arrays of order 3 or more as shown in Fig. 4.3. The method can be seen as

carrying out simultaneous factor analysis on multiple slabs (matrices) of a tensor such that the

factors of each slab differ just by a scale. CP factorization is defined in a symmetric fashion over

all the modes, such that a tensor is decomposed into a sum of rank-one tensors, where each rank

one tensor is the outer product of the latent vector in all modes. For a third order tensor ∈

ℛ   ×  × , a rank-K CP is represented as:

= ∘ ∘ +

where Z and U and W are the latent variables corresponding to the three modes.

Several implementations of CP factorization have existed for quite some time now, for

example the seminal implementation by [43]. Recently, CP and other factorizations have gained

substantial interest amongst the machine learning community [44][45], since recent

developments addressed several methodological challenges posed by multi-way data sets. More

recently, an easy to use probabilistic implementation of CP was presented by [46]. The

implementation automatically handles missing values in the data, hence making it applicable to a

wide selection of real-world data sets. It also features automatic component selection as well as

visualization and prediction routines making both exploratory and predictive analytics easier.
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2.5. Multi-tensor factorization

Multi-tensor factorization (MTF, [41][42]) is a new machine learning method designed to

capture relationships between a collection of tensor datasets. MTF jointly factorizes multiple

tensors to learn a joint low-dimensional representation that models the statistical dependencies

between the tensors. Interestingly, MTF considers matrices as tensors of order two, thus enabling

joint factorization of both matrices and tensors. This characteristic makes it possible to analyze

novel data sets composed of matrices as well as tensors in a single joint analysis.

MTF is designed to factorize multiple co-occurring data sets, with the objective of

distinguishing the shared and specific components regardless of their matrix or tensor nature. This

is achieved by modeling the entire variation of all data sets through a common Factor analysis and

CP-type factorization having two keys features. First, the factorization is characterized by latent

variables  that are common between all the views (tensor and matrices). This allows the

factorization to capture cross-dependencies regardless of the data view. Second, the loadings

controls which of the patterns in  are active in each the views. Learning these  loadings makes

it possible to identify the dependency patterns in a truly data-driven fashion without any prior

information on dependency patterns.

Formally, for multiple paired tensors ( ) ∈ ℛ  ×  × , where t = 1…T, we specify a joint

model of matrices and tensor. An indicator variable identifies the tensors ( =1) and matrices

( =2), MTF is formulated using normal distributions and conjugate priors as:

x , ,
( ) ~ z , . w , . u , , ( ( ))

, ( ) ~ (0, )
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w ,
( ) ~ ℎ , 0, ( ,

( ) ) + (1 − ℎ , )

ℎ , ~ ( )

~ ( , )

,
( ) ~ ( , )

( ) ~ ( , ).

Here, the latent variables  and  are common to all the tensors and capture the

underlying patterns, while ( ) translate these patterns for each tensor. The binary variables ht,k

control the view activity through a spike and slab prior, and are automatically learned from the

data. The model also enforces feature-wise sparsity through a to learn sparse features that are

easier to interpret. The method is implemented using a Gibbs sampler in R programing language

and made available freely (http://research.ics.aalto.fi/mi/software/MTF). The implementation

learns the model parameters in a Bayesian formulation, while providing default settings for all

the hyperparameters.

Fig. 4.3. Visual representation of CP factorization of a third order tensor. The data tensor  is factorized into low-
dimensional matrices Z, U and W that capture the key statistical patterns in the data.
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3. Selected case studies

3.1. Toxicogenomic Datasets

The toxicogenomic tools described in this Chapter are primarily built upon the

Connectivity Map (CMap) and NCI60 data sets. CMap, introduced by the US Broad Institute, is

a compendium of gene expression response profiles to 1309 small-molecules comprising mostly

FDA approved drugs ([47]; https://www.broadinstitute.org/connectivity-map-cmap). The post-

treatment measurements originated from three main cancer cell-lines spanning different tissues

or cell-types, namely, breast (MCF7), prostate (PC3) and blood (HL60). CMap has been widely

used to study interactions between small molecules, genes and diseases for various purposes

including understanding the drug MoA, identifying biologically similar compounds as well as

molecular mechanisms of toxicity. The treatment vs control differential gene expression (log2

readout) was obtained from the CMap dataset, such that positive expression values represent up-

regulation and negative represent down-regulation as a result of treatment [4][48].

The NCI60 is a unique data repository from the US National Cancer Institute (NCI) that

screened thousands of compounds over 59 cancer cell lines to provide measurements of drug

responses (Shoemaker 2006; https://dtp.cancer.gov/discovery_development/nci-60). Drug

response metrics include GI50 (50% Growth Inhibition), total growth inhibition (TGI), and LC50

(50% Lethal Concentration). A large number of common compounds tested in CMap cell lines

were also profiled by the NCI60 program. This presents the unique opportunity to study toxic

effects by integrating these two, large-scale data sets (see Section 3.3).  For each CMap drug-cell

pair which was also screened by NCI60, a dose-dependent toxicity score was computed such that
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positive values indicated that the CMap instance is profiled at a drug-concentration higher than

GI50, TGI or LC50, and therefore suggest a dose-dependent cytotoxic response.

Fig. 4.4. Toxicogenomic component activity plot. The plot shows the components that are found by the GFA model
as active in the joint gene expression and toxicity data set. The y-axis shows the component number in ascending
order while the x-axis shows the two data sets. The components colored black are active. The model was run for
K=40 components and a total of 8 components (bottom black in both Gene expression and Toxicity) are found as
shared between the two datasets. These components capture statistically patterns that are correlated across the two
data sets, and are hence can be hypothesized for representing molecular mechanisms of toxicity.

3.2 Multi-view toxicogenomic using group factor analysis

To study the gene-toxicity relationships, we performed an integrated modeling of the two

data sets, CMap and NCI60. The CMap data comprised detailed gene level differential

expression profiles that represent the molecular response space across 11350 genes, measured

after 222 drug treatments across 3 cell-lines. These data were preprocessed as previously

described [48]. To focus the analysis, the 1106 highest variance genes were selected to form an

expression matrix consisting of 222 drug-cell samples x 1106 genes. The toxicity values

described in Section 3.1 were used to represent profiles of 222 drug-cell samples x 3 toxicity

measures.

Group factor analysis (GFA) is designed to model the relationships between multiple

datasets. Here, GFA was used to identify the toxicogenomic dependencies between drug-

induced gene expression changes and toxicity scores. These dependencies, once identified, can

elicit insights into molecular mechanisms of toxicity. GFA was run with large enough
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components as specified by [28], identifying 8 shared components that capture cross-expression

and toxicity relationships, as shown in Fig. 4.4, whereas a number of components found were

specific to one of the datasets only. The shared components model the dependencies between the

datasets while those specific to gene expression capture patterns that are not correlated with

toxicity and vice-versa.  The components 1 through 8 had varying numbers of genes attached to

them: 518, 748, 39, 90, 27, 45, 16 and 20. The first two components included an excess of up-

regulated genes (component 1: 316) and down-regulated (component 2: 706) genes, respectively.

Functional analysis of the eight components was performed with Ingenuity Pathway

Analysis (IPA) which indicated that the first two components captured the largest number of

biological mechanisms. The first component is highlighted here, as up-regulated genes are most

informative for biomarker analysis applications (Fig. 4.5). Component 1 enriched for many

organ-toxicity-related gene lists, including hepatic cholestasis and liver necrosis as well as

functional pathways related to oxidative stress, the p53 pathway activation and Nf-kappa B

signaling and Toll-like receptor (TLR) activation. RELA, the NF-kappa B regulator, was

predicted to be most clearly effected (p<10-16 and Z-score 3.5). Others included the TP53

(p<10-10, Z>1), TLR-related ECSIT (p<10-15, Z > 3.5) and NR3C1 (p<10-14, Z<-05),

supporting the role of NF-kappa B signaling and the Toll-like receptor activation for component

1. The GFA model identified related drugs across all three cancer types, hence suggesting a

generic response of the drugs.
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Fig 4.5. The first shared component found by GFA. The plot shows the gene expression profiles of the top genes for
the top drugs of the component across the three cancer cell lines (MCF7, PC3 and HL60). Red represents
upregulated expression while blue is downregulated expression. The correspondingly active toxicity profiles of the
same drugs are shown on the right. Here green represents high dose-dependent toxicity values.

The second component included many cell cycle-related genes, as could be expected for a

component which mainly contained down-regulated genes. Similar pathways were found

activated among the 14 predictive toxicogenomic space PTGS components derived using the

LDA analysis, and there is an average of almost 40% overlap between the PTGS genes and the

GFA genes [4]. It is interesting to note that the first two GFA components were much larger than

the other six, whereas the PTGS components had more equal numbers of genes that were

significantly associated with them. Further studies would be needed to verify the utility of the

GFA components for toxicity-mode-of-action studies, including biomarker discovery and Drug

Induced Liver Injury (DILI) prediction.
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3.3 Structural-toxicogenomic using multi-tensor factorization

Toxicogenomic applications can be extended to simultaneously include a quantitative

structure activity response (QSAR) analysis, by modeling the dependencies between cellular

responses of drugs and their structural descriptors. The formulation can, therefore, explore,

identify and predict genomic responses linked to drugs toxicity, while simultaneously discovering

their cancer specificity and correspondence to structural properties of the drugs.

Data collection for such analysis can be represented as a set of multiple tensors and

matrices. In this example, we specified two tensors and one matrix. The post-treatment gene

expression data from CMap was represented as the first tensor of drugs times cancers times genes

dimensions. Multiple toxicity measures such as GI50, TGI and LC50 from the NCI60 formed the

second tensor of drugs times cancers times toxicity measures. Finally, the structural properties of

the drugs were represented as a matrix of drugs times descriptors.

The expression and toxicity data sets from CMap and NCI60 were processed as described

in [4]. For drug structures, the modelling could make use of one or more different types of

structures based on the hypothesis being tested; for example, [29] used both 3D descriptors and

2D fingerprints of the drugs for structure-response analysis. In this example, Functional

Connectivity Fingerprints FCFP4 were used for representing the structural properties of the drugs.

FCFP4 are advanced 2D circular topological fingerprints that have been designed for modeling of

structure-activity relationships.

The multi-tensor factorization (MTF) method of Section 2.3 [42] was used to explore the

structural toxicogenomic relationships. The model identified three key response components that

are shared between gene expression, toxicity and structural datasets, revealing findings that are

both recently established as biological insights, as well as new biological discoveries that may
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have potential impact. The first component identified a response primarily driven by three Heat

Shock Protein (HSP) inhibitor drugs, geldanamycin, tanespimycin, and alvespimycin, all of which

are structurally analogous drugs. The drugs demonstrated an HSP response of the cells as through

up-regulation of key HSP genes. This pan-cancer response across all three cancers is linked to the

toxicity outcomes of the drugs. HSP90 is a molecular chaperone protein that is essential for

stabilization of a variety of other proteins [50], and HSP90 inhibitors bind to the protein, resulting

in its loss of function. HSP90 inhibitors have been evaluated for their therapeutic efficacy in

multiple cancers [51]. This component, therefore, presents a well-known HSP90 response of

cancer cells. For details on this and other components, see [42].

3.4. Predictive toxicogenomic space (PTGS)

Predictive toxicogenomics space (PTGS, [4]) is a recent ‘big data compacting and data

fusion’ methodology to model various adverse and toxic outcomes on cellular and organism levels.

A machine learning based data summarization approach was applied on a large transcriptomics

data set. This methodology formed a predictive tool termed PTGS that used as features over 1000

genes distributed over 14 overlapping cytotoxicity-related gene space components, as described in

[4]. Specifically, a LDA matrix factorization-based method was applied to the gene profiles from

the Connectivity Map dataset, and the resulting summarized components were fused with

cytotoxicity data from the NCI-60 cancer cell line screens to generate the PTGS. The PTGS tool

was validated for predicting Drug Induced Liver Injury (DILI) and liver cytopathologal changes

by calculating PTGS component-scores within three liver-related subsets of the independent TG-

GATEs database [52], being the largest public toxicogenomics database. It was shown to

successfully capture all the studied liver pathological changes in rats, and in conjunction with
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human therapeutic drug exposure levels (Cmax), was able to facilitate the use of cell culture-derived

toxicogenomics experiments with human and rat hepatocytes to predict DILI with greater accuracy

than other in vitro methods [4].

4. Discussion

Recent advances in machine learning methodologies have made it possible to perform

integrated analysis of the gene expression response data and toxicity profiles directly. Such

detailed analysis offers deeper insights by linking the activity patterns of the genes directly with

the toxicity responses, and hence enriching the factor components with detailed interactions. As

molecular responses of cancer cells are known to depend on a multitude of factors, including

drug MoA, cell type and cellular states, simultaneous modeling of these various factors is

beginning to attract attention. Specifically, in cancer, cells are known to be heterogeneous and

respond selectively to targeted drugs, making it valuable to systematically model the various

factors and segregate responses specific to a particular cancer-type from those which are generic.

A limitation of current methods is the ability to handle missing values particularly when

considering overlap between different data sets. Compared to many other “Big Data” study

areas, biomedical data is less extensive and contains more missing values. The LDA method

used with the PTGS had the advantage that the entire CMap datset could be used to derive the

initial components, whereas the GFA method required at least some overlap between all

variables, reducing the amount of gene expression data used. Tensor factorization methods are

even less tolerant of missing values. Therefore unique methodological considerations and trade-

offs apply to each study.
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A key outcome of these joint analysis is the ability to predict the toxicity outcomes of

compound treatment. The prediction of unexpected toxic effects is a challenging and important

goal in toxicology. The presented first steps in computational toxicogenomic open up a systematic

way for genomics-driven prediction of toxic effects. In addition, these provide novel mechanistic

insights into the links between genomic measurements of cells and toxicological profiles of drugs.

Gene expression response profiles of drugs present a popular systems-level view, while toxicity

profiles summarize the drugs’ phenotypic behavior. Large repositories of gene expression and drug

sensitivity profiles such as those emerging from NCI60, CMap, CCLE, Sanger, and LINCS profile

cellular responses at several levels of detail in a cell context-specific manner. With the emergence

of heterogeneous and partially-paired data sets, joint factorizations are gaining popularity to

identify novel dependency patterns, as well as to design powerful predictive applications [29][53].

These recent advances in machine learning, and especially the methods described in Section 2,

enable systematic analysis of such large data repositories to provide novel toxicogenomic insights

and predictions.

5. Conclusion and future directions

State-of-the-art machine learning methods have been presented here for modeling various

toxicogenomic relationships. These advanced computational methodologies enable integration of

disparate, high-dimensional data sources, including but not limited to omics, drug screening,

chemical structures and drug-targets to achieve novel toxicogenomic analysis in terms of:

(i) providing means for predicting personalized toxicity outcomes,

(ii) identifying toxic modes of action, and

(iii) enabling quantitative structure activity modeling.
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The here presented works suggest novel directions for future analysis. From the

application perspective, matrix and tensor factorization methods can serve to stimulate

integrative analysis of various toxicological and toxicogenomic datasets to suggest novel

hypotheses. For example, a joint analysis of omics, toxicity and drug target data sets can help to

identify disparate target-driven and toxic molecular mechanisms. Integrative analysis with drug-

side effect repositories can help draw novel interactions between disease, side-effect and toxicity

mechanisms. From a holistic angle, a large-scale analysis may even help us understand the

different toxic states of a cell and the molecular drivers of each cellular state.

While there are limitations in the current analysis, future extensions of the analyses can

advance our knowledge in various directions. First, using detailed drug-target interactions in the

models could help classify the on-target and off-target effects more reliably; however, a key

limitation here is to obtain large-scale standardized drug-target profiles. Very recently works in

standardizing the drug-target interactions have come up on a large-scale [54] and exploring these

for an integrated drug-target-toxicogenomic analysis would be an interesting future direction.

Secondly, a large majority of toxicity analysis is performed on data originating from cell line

panels. It would be valuable to explore if tissue-specific toxicity profiles are available for a more

robust and practically applicable analysis. Third, organism-level toxicity data are limited to only

a few organisms only; it is important to evaluate how comprehensive such modelling is in

general and how widely the results can be applied across organisms.

In terms of future developments in the toxicology practices, studies and risk assessment

strategies, we hope the presented works could stimulate the integration of advanced machine

learning models. For example, the methods presented here can be used to identify the markers of

toxic response towards a data and knowledge driven approach for risk assessment.
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