39 research outputs found

    Collective dynamics of pedestrians interacting with attractions

    Get PDF
    In order to investigate collective effects of interactions between pedestrians and attractions, this study extends the social force model. Such interactions lead pedestrians to form stable clusters around attractions, or even to rush into attractions if the interaction becomes stronger. It is also found that for high pedestrian density and intermediate interaction strength, some pedestrians rush into attractions while others move to neighboring attractions. These collective patterns of pedestrian movements or phases and transitions between them are systematically presented in a phase diagram. The results suggest that safe and efficient use of pedestrian areas can be achieved by moderating the pedestrian density and the strength of attractive interaction, for example, in order to avoid situations involving extreme desire for limited resources.Peer reviewe

    Jamming transitions induced by an attraction in pedestrian flow

    Get PDF
    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.Peer reviewe

    Analysis of Potential Shift to Low-Carbon Urban Travel Modes: A Computational Framework Based on High-Resolution Smartphone Data

    Get PDF
    Given the necessity to understand the modal shift potentials at the level of individual travel times, emissions, and physically active travel distances, there is a need for accurately computing such potentials from disaggregated data collection. Despite significant development in data collection technology, especially by utilizing smartphones, there are limited efforts in developing useful computational frameworks for this purpose. First, development of a computational framework requires longitudinal data collection of revealed travel behavior of individuals. Second, such a computational framework should enable scalable analysis of time-relevant low-carbon travel alternatives in the target region. To this end, this research presents an open-source computational framework, developed to explore the potential for shifting from private car to lower-carbon travel alternatives. In comparison to previous development, our computational framework estimates and illustrates the changes in travel time in relation to the potential reductions in emission and increases in physically active travel, as well as daily weather conditions. The potential usefulness of the framework was evaluated using long-term travel data of around a hundred travelers within the Helsinki Metropolitan Region, Finland. The case study outcomes also suggest that in several cases traveling by public transport or bike would not increase travel time compared to the observed car travel. Based on the case study results, we discuss potentially acceptable travel times for mode shift, and usefulness of the computational framework for decisions regarding transition to sustainable urban mobility systems. Finally, we discuss limitations and lessons learned for data collection and further development of similar computational frameworks.Peer reviewe

    A computational framework for revealing competitive travel times with low-carbon modes based on smartphone data collection

    Get PDF
    Evaluating potential of shifting to low-carbon transport modes requires considering limited travel-time budget of travelers. Despite previous studies focusing on time-relevant modal shift, there is a lack of integrated and transferable computational frameworks, which would use emerging smartphone-based high-resolution longitudinal travel datasets. This research explains and illustrates a computational framework for this purpose. The proposed framework compares observed trips with computed alternative trips and estimates the extent to which alternatives could reduce carbon emission without a significant increase in travel time.. The framework estimates potential of substituting observed car and public-transport trips with lower-carbon modes, evaluating parameters per individual traveler as well as for the whole city, from a set of temporal and spatial viewpoints. The illustrated parameters include the size and distribution of modal shifts, emission savings, and increased active-travel growth, as clustered by target mode, departure time, trip distance, and spatial coverage throughout the city. Parameters are also evaluated based on the frequently repeated trips. We evaluate usefulness of the method by analyzing door-to-door trips of a few hundred travelers, collected from smartphone traces in the Helsinki metropolitan area, Finland, during several months. The experiment's preliminary results show that, for instance, on average, 20% of frequent car trips of each traveler have a low-carbon alternative, and if the preferred alternatives are chosen, about 8% of the carbon emissions could be saved. In addition, it is seen that the spatial potential of bike as an alternative is much more sporadic throughout the city compared to that of bus, which has relatively more trips from/to city center. With few changes, the method would be applicable to other cities, bringing possibly different quantitative results. In particular, having more thorough data from large number of participants could provide implications for transportation researchers and planners to identify groups or areas for promoting mode shift. Finally, we discuss the limitations and lessons learned, highlighting future research directions.Peer reviewe

    Trade-off between jerk and time headway as an indicator of driving style

    Get PDF
    Variation in longitudinal control in driving has been discussed in both traffic psychology and transportation engineering. Traffic psychologists have concerned themselves with “driving style”, a habitual form of behavior marked by it’s stability, and its basis in psychological traits. Those working in traffic microsimulation have searched for quantitative ways to represent different driver-car systems in car following models. There has been unfortunately little overlap or theoretical consistency between these literatures. Here, we investigated relationships between directly observable measures (time headway, acceleration and jerk) in a simulated driving task where the driving context, vehicle and environment were controlled. We found individual differences in the way a trade-off was made between close but jerky vs. far and smooth following behavior. We call these “intensive” and “calm” driving, and suggest this trade-off can serve as an indicator of a possible latent factor underlying driving style. We posit that pursuing such latent factors for driving style may have implications for modelling driver heterogeneity across various domains in traffic simulation.Peer reviewe

    HUTSIM - liikennevalosimulaattori

    No full text

    Kokemuksia ajantasaisista liikennemalleista

    No full text
    corecore