295 research outputs found

    Experimental Spin Testing of Integrally Damped Composite Plates

    Get PDF
    The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches was investigated at NASA-Lewis Research Center. Ten different plate sets were experimentally spin tested and the resulting data was analyzed. The first-four plate sets investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The remaining six plate sets investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates

    The use of cross-section warping functions in composite rotor blade analysis

    Get PDF
    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references

    Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    Get PDF
    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed

    The experimental behavior of spinning pretwisted laminated composite plates

    Get PDF
    The purpose of the research is to gain an understanding of the material and geometric couplings present in advanced composite turbo-propellers. Twelve pre-twisted laminated composite plates are tested. Three different ply lay-ups (2 symmetric and 1 asymmetric) and four different geometries (flat and 30x pre-twist about the mid-chord, quarter-chord, and leading edge) distinguish each plate from one another. Four rotating and non-rotating tests are employed to isolate the material and geometric couplings of an advanced turbo propeller. The first series of tests consist of non-rotating static displacement, strain, and vibrations. These tests examine the effects of ply lay-up and geometry. The second series of tests consist of rotating displacement, strain, and vibrations with various pitch and sweep settings. These tests utilize the Dynamic Spin Rig Facility at the NASA Lewis Research Center. The rig allows the spin testing of the plates in a near vacuum environment. The tests examine how the material and plate geometry interact with the pitch and sweep geometry of an advanced turbo-propeller

    California Space Grant Consortium

    Get PDF
    The organizational and administrative structure of the CaSGC has the Consortium Headquarters Office (Principal Investigator - Dr. John Kosmatka, California Statewide Director - Dr. Michael Wiskerchen) at UC San Diego. Each affiliate member institution has a campus director and an scholarship/fellowship selection committee. Each affiliate campus director also serves on the CaSGC Advisory Council and coordinates CMIS data collection and submission. The CaSGC strives to maintain a balance between expanded affiliate membership and continued high quality in targeted program areas of aerospace research, education, workforce development, and public outreach. Associate members are encouraged to participate on a project-by-project basis that meets the needs of California and the goals and objectives of the CaSGC. Associate members have responsibilities relating only to the CaSGC projects they are directly engaged in. Each year, as part of the CaSGC Improvement Plan, the CaSGC Advisory Council evaluates the performance of the affiliate and associate membership in terms of contributions to the CaSGC Strategic Plan, These CaSGC membership evaluations provide a constructive means for elevating productive members and removing non-performing members. This Program Improvement and Results (PIR) report will document CaSGC program improvement results and impacts that directly respond to the specific needs of California in the area of aerospace-related education and human capital development and the Congressional mandate to "increase the understanding, assessment, development and utilization of space resources by promoting a strong education base, responsive research and training activities, and broad and prompt dissemination of knowledge and technology"

    Mobbing w wychowaniu

    Get PDF
    Słowo „mobbing” pochodzi od angielskiego słowa „mob” – chaotyczny tłum ludzi, zwykłych ludzi, tłum zaangażowany w bezprawną przemoc – i oznacza „atakować, nękać, otaczać”. Czynnikami, które pozwalają prognozować zachowania przemocowe są: przestępczość rodziców, temperament dziecka, niewielkie wsparcie ze strony opiekuna (najczęściej matki) oraz stosowanie metod wychowawczych opartych na sile i permisywnej postawie rodziców, którzy tolerują agresywne zachowania dziecka wobec rodzeństwa, rówieśników i dorośli. Pojawianiu się zachowań agresywnych dzieci sprzyjają składowe stylu wychowania w rodzinie oraz zależności między nimi. Aby wspomóc wychowanie bez przemocy, warto zastanowić się nad modelem rodzicielstwa sytuacyjnego. Skuteczna profilaktyka zachowań agresywnych powinna obejmować propozycje programów skierowanych w pierwszej kolejności do rodziców. Kluczowe jest nauczenie rodziców, jak reagować na niewłaściwe zachowanie bez uciekania się do przemocy

    Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    Get PDF
    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach

    Non-destructive evaluation of cement-based materials from pressure-stimulated electrical emission - Preliminary results

    Get PDF
    This is the post-print version of the final paper published in Construction and Building Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper introduces the possibility of in situ assessment of loading and remaining strength in concrete structures by means of measuring discharge of electric current from loaded specimens. The paper demonstrates that the techniques have been applied to other rock-like materials, but that for the first time they are applied to cement-based materials and a theoretical model is proposed in relation to the appearance of electrical signals during sample loading and up to fracture. A series of laboratory experiments on cement mortar specimens in simple uniaxial compression, and subsequently in bending – hence displaying both tension and compression – are described and show clear correlations between resulting strains and currents measured. Under uniaxial loading there is a well-defined relationship between the pressure-stimulated current (PSC) as a result of a monotonic mechanical loading regime. Similar results are observed in the three-point bending tests where a range of loading regimes is studied, including stepped changes in loading. While currents can be measured at low strains, best results seem to be obtained when strains approach and exceed yield stress values. This technique clearly has immense potential for structural health monitoring of cement-based structures. Both intermittent and continuous monitoring becomes possible, and given an ongoing campaign of monitoring, remaining strength can be estimated

    The Tumor Suppressor LKB1 Kinase Directly Activates AMP-Activated Kinase and Regulates Apoptosis in Response to Energy Stress

    Get PDF
    AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence indicating that the LKB1 serine/threonine kinase, the gene inactivated in the Peutz-Jeghers familial cancer syndrome, is the dominant regulator of AMPK activation in several mammalian cell types. We show that LKB1 directly phosphorylates Thr-172 of AMPKalpha in vitro and activates its kinase activity. LKB1-deficient murine embryonic fibroblasts show nearly complete loss of Thr-172 phosphorylation and downstream AMPK signaling in response to a variety of stimuli that activate AMPK. Reintroduction of WT, but not kinase-dead, LKB1 into these cells restores AMPK activity. Furthermore, we show that LKB1 plays a biologically significant role in this pathway, because LKB1-deficient cells are hypersensitive to apoptosis induced by energy stress. On the basis of these results, we propose a model to explain the apparent paradox that LKB1 is a tumor suppressor, yet cells lacking LKB1 are resistant to cell transformation by conventional oncogenes and are sensitive to killing in response to agents that elevate AMP. The role of LKB1/AMPK in the survival of a subset of genetically defined tumor cells may provide opportunities for cancer therapeutics
    corecore