353 research outputs found

    Prediction Intervals After Forward Selection Using d Variables

    Get PDF

    Book review: David Bronstein, Aristotle on Knowledge and Learning: The Posterior Analytics. Oxford: Oxford University Press, 2016. (pp.xiii-272).

    Get PDF
    ABSTRACT This is a review of David Bronstein's book "Aristotle on Knowledge and Learning: The Posterior Analytics" (Oxford: Oxford University Press, 2016

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    Pharmacokinetic and Tissue Distribution of Fucoidan from Fucus vesiculosus after Oral Administration to Rats

    Get PDF
    Fucus vesiculosus L., known as bladderwrack, belongs to the brown seaweeds, which are widely distributed throughout northern Russia, Atlantic shores of Europe, the Baltic Sea, Greenland, the Azores, the Canary Islands, and shores of the Pacific Ocean. Fucoidan is a major fucose-rich sulfated polysaccharide found in Fucus (F.) vesiculosus. The pharmacokinetic profiling of active compounds is essential for drug development and approval. The aim of the study was to evaluate the pharmacokinetics and tissue distribution of fucoidan in rats after a single-dose oral administration. Fucoidan was isolated from F. vesiculosus. The method of measuring anti-activated factor X (anti-Xa) activity by amidolytic assay was used to analyze the plasma and tissue concentrations of fucoidan. The tissue distribution of fucoidan after intragastric administration to the rats was characterized, and it exhibited considerable heterogeneity. Fucoidan preferentially accumulates in the kidneys (AUC(0-t) = 10.74 mu g.h/g; C-max = 1.23 mu g/g after 5 h), spleen (AUC(0-t) = 6.89 mu g.h/g; C-max = 0.78 mu g/g after 3 h), and liver (AUC(0-t) = 3.26 mu g.h/g; C-max = 0.53 mu g/g after 2 h) and shows a relatively long absorption time and extended circulation in the blood, with a mean residence time (MRT) = 6.79 h. The outcome of this study provides additional scientific data for traditional use of fucoidan-containing plants and offers tangible support for the continued development of new effective pharmaceuticals using fucoidan.Peer reviewe

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    Programmable in situ amplification for multiplexed imaging of mRNA expression

    Get PDF
    In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR). With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization

    Alpha2 Macroglobulin-Like Is Essential for Liver Development in Zebrafish

    Get PDF
    Background: Alpha 2 Macroglobulin family members have been studied extensively with respect to their roles in physiology and human disease including innate immunity and Alzheimer’s disease, but little is known about a possible role in liver development loss-of-function in model systems. Principal Findings: We report the isolation of the zebrafish a2 macroglobulin-like (A2ML) gene and its specific expression in the liver during differentiation. Morpholino-based knock-down of A2ML did not block the initial formation of the liver primordium, but inhibited liver growth and differentiation. Significance: This report on A2ML function in zebrafish development provides the first evidence for a specific role of an A2M family gene in liver formation during early embryogenesis in a vertebrate

    Gene Circuit Analysis of the Terminal Gap Gene huckebein

    Get PDF
    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network

    Comparative Preclinical Evaluation of the Safety, Antifungal Activity, and Pharmacokinetics of Sertaconazole Products for External Use

    Get PDF
    The high prevalence of fungal skin infections motivates expanding the range of sertaconazole products for external use.The aim of the study was a preclinical comparison of the safety, antifungal activity, and pharmacokinetics of Sertaverin® 2% medicated shampoo (VERTEX JSC, Russia) with those of Sertamicol® 2% solution for external use (Glenmark Pharmaceuticals Ltd, India) and Nizoral® 2% shampoo (Janssen Pharmaceuticals N.V., Belgium) approved in the Russian Federation.Materials and methods. In the toxicity study, the medicinal products were applied to the skin of male and female outbred rats at doses of 0.5 or 1.5 mL/animal for 28 days. The authors evaluated the pharmacokinetics of two sertaconazole formulations (shampoo and solution) following a single administration to adult male rats at the same dose. Nizoral® was not used in the pharmacokinetics study because it contains a different active substance, ketoconazole. The minimum inhibitory concentration (MIC) was determined using the serial microdilution method in a wide range of concentrations.Results. The medicinal products did not exhibit any significant toxic effects in laboratory animals after 28 days of repeated dermal application. Plasma sertaconazole concentrations were negligible. Sertaconazole was intensively distributed in the liver, which is a highly vascularised organ, and in the target organ (skin at the site of application). The relative bioavailability of sertaconazole from the shampoo relative to that from the solution for external use was approximately 30% in liver tissues and approximately 363% in skin tissues at the application site. Sertaverin® was comparable to sertaconazole in the active substance form in terms of inhibiting the growth of Malassezia furfur strains. The MICs calculated on the active substance basis were ≤16–64 μg/mL.Conclusions. With its synergistic dual mechanism of action, broad-spectrum antifungal activity, lipophilic properties, and low systemic absorption, Sertaverin® may provide a more effective and safe alternative to marketed medicinal products for scalp diseases
    corecore