16 research outputs found

    Serological Response to the 2009 Pandemic Influenza A (H1N1) Virus for Disease Diagnosis and Estimating the Infection Rate in Thai Population

    Get PDF
    BACKGROUND: Individuals infected with the 2009 pandemic virus A(H1N1) developed serological response which can be measured by hemagglutination-inhibition (HI) and microneutralization (microNT) assays. METHODOLOGY/PRINCIPAL FINDINGS: MicroNT and HI assays for specific antibody to the 2009 pandemic virus were conducted in serum samples collected at the end of the first epidemic wave from various groups of Thai people: laboratory confirmed cases, blood donors and health care workers (HCW) in Bangkok and neighboring province, general population in the North and the South, as well as archival sera collected at pre- and post-vaccination from vaccinees who received influenza vaccine of the 2006 season. This study demonstrated that goose erythrocytes yielded comparable HI antibody titer as compared to turkey erythrocytes. In contrast to the standard protocol, our investigation found out the necessity to eliminate nonspecific inhibitor present in the test sera by receptor destroying enzyme (RDE) prior to performing microNT assay. The investigation in pre-pandemic serum samples showed that HI antibody was more specific to the 2009 pandemic virus than NT antibody. Based on data from pre-pandemic sera together with those from the laboratory confirmed cases, HI antibody titers ≥ 40 for adults and ≥ 20 for children could be used as the cut-off level to differentiate between the individuals with or without past infection by the 2009 pandemic virus. CONCLUSIONS/SIGNIFICANCE: Based on the cut-off criteria, the infection rates of 7 and 12.8% were estimated in blood donors and HCW, respectively after the first wave of the 2009 influenza pandemic. Among general population, the infection rate of 58.6% was found in children versus 3.1% in adults

    Incidence, Seasonality and Mortality Associated with Influenza Pneumonia in Thailand: 2005–2008

    Get PDF
    Data on the incidence, seasonality and mortality associated with influenza in subtropical low and middle income countries are limited. Prospective data from multiple years are needed to develop vaccine policy and treatment guidelines, and improve pandemic preparedness.During January 2005 through December 2008, we used an active, population-based surveillance system to prospectively identify hospitalized pneumonia cases with influenza confirmed by reverse transcriptase–polymerase chain reaction or cell culture in 20 hospitals in two provinces in Thailand. Age-specific incidence was calculated and extrapolated to estimate national annual influenza pneumonia hospital admissions and in-hospital deaths.Influenza was identified in 1,346 (10.4%) of pneumonia patients of all ages, and 10 influenza pneumonia patients died while in the hospital. 702 (52%) influenza pneumonia patients were less than 15 years of age. The average annual incidence of influenza pneumonia was greatest in children less than 5 years of age (236 per 100,000) and in those age 75 or older (375 per 100,000). During 2005, 2006 and 2008 influenza A virus detection among pneumonia cases peaked during June through October. In 2007 a sharp increase was observed during the months of January through April. Influenza B virus infections did not demonstrate a consistent seasonal pattern. Influenza pneumonia incidence was high in 2005, a year when influenza A(H3N2) subtype virus strains predominated, low in 2006 when A(H1N1) viruses were more common, moderate in 2007 when H3N2 and influenza B co-predominated, and high again in 2008 when influenza B viruses were most common. During 2005–2008, influenza pneumonia resulted in an estimated annual average 36,413 hospital admissions and 322 in-hospital pneumonia deaths in Thailand.Influenza virus infection is an important cause of hospitalized pneumonia in Thailand. Young children and the elderly are most affected and in-hospital deaths are more common than previously appreciated. Influenza occurs year-round and tends to follow a bimodal seasonal pattern with substantial variability. The disease burden varies significantly from year to year. Our findings support a recent Thailand Ministry of Public Health (MOPH) decision to extend annual influenza vaccination to older adults and suggest that children should also be targeted for routine vaccination

    Conservation of the S10-spc-α Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus Leptospira

    Get PDF
    S10-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-α locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-α locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously

    Heterosubtypic Antibody Response Elicited with Seasonal Influenza Vaccine Correlates Partial Protection against Highly Pathogenic H5N1 Virus

    Get PDF
    BACKGROUND: The spread of highly pathogenic avian influenza (HPAI) H5N1 virus in human remains a global health concern. Heterosubtypic antibody response between seasonal influenza vaccine and potential pandemic influenza virus has important implications for public health. Previous studies by Corti et al. and by Gioia et al. demonstrate that heterosubtypic neutralizing antibodies against the highly pathogenic H5N1 virus can be elicited with a seasonal influenza vaccine in humans. However, whether such response offers immune protection against highly pathogenic H5N1 virus remained to be determined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using a sensitive influenza HA (hemagglutinin) and NA (neuraminidase) pseudotype-based neutralization (PN) assay we first confirmed that low levels of heterosubtypic neutralizing antibody response against H5N1 virus were indeed elicited with seasonal influenza vaccine in humans. We then immunized mice with the seasonal influenza vaccine and challenged them with lethal doses of highly pathogenic H5N1 virus. As controls, we immunized mice with homosubtypic H5N1 virus like particles (VLP) or PBS and challenged them with the same H5N1 virus. Here we show that low levels of heterosubtypic neutralizing antibody response were elicited with seasonal influenza vaccine in mice, which were significantly higher than those in PBS control. Among them 2 out of 27 whose immune sera exhibited similar levels of neutralizing antibody response as VLP controls actually survived from highly pathogenic H5N1 virus challenge. CONCLUSIONS/SIGNIFICANCE: Therefore, we conclude that low levels of heterosubtypic neutralizing antibody response are indeed elicited with seasonal influenza vaccine in humans and mice and at certain levels such response offers immune protection against severity of H5N1 virus infection

    Aboriginal and invasive rats of Genus Rattus as hosts of infectious agents

    Full text link
    From the perspective of ecology of zoonotic pathogens, the role of the Old World rats of the genus Rattus is exceptional. The review analyzes specific characteristics of rats that contribute to their important role in hosting pathogens, such as host-pathogen relations and rates of rat-borne infections, taxonomy, ecology, and essential factors. Specifically the review addresses recent taxonomic revisions within the genus Rattus that resulted from applications of new genetic tools in understanding relationships between the Old World rats and the infectious agents that they carry. Among the numerous species within the genus Rattus, only three species-the Norway rat (R. norvegicus), the black or roof rat (R. rattus), and the Asian black rat (R. tanezumi)-have colonized urban ecosystems globally for a historically long period of time. The fourth invasive species, R. exulans, is limited to tropical Asia-Pacific areas. One of the points highlighted in this review is the necessity to discriminate the roles played by rats as pathogen reservoirs within the land of their original diversification and in regions where only one or few rat species were introduced during the recent human history. (Résumé d'auteur
    corecore