574 research outputs found

    Price majorization and the inverse Lorenz function

    Get PDF
    The paper presents an approach to the measurement of economic disparity in several commodities. We introduce a special view on the usual Lorenz curve and extend this view to the multivariate situation: Given a vector of shares of the total endowments in each commodity, the multivariate inverse Lorenz function (ILF) indicates the maximum percentage of the population by which these shares or less are held. Its graph is the Lorenz hypersurface. Many properties of the ILF are studied and the equivalence of the pointwise ordering of ILFs and the price Lorenz order is established. We also study similar notions for distributions of absolute endowments. Finally, several disparity indices are suggested that are consistent with these orderings. --Multivariate Lorenz order,directional majorization,price Lorenz order,generalized Lorenz function,multivariate disparity indices

    Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)

    Get PDF
    We introduce a theory on marginal values and their core stability for cooperative games with arbitrary coalition structure. The theory is based on the notion of nested sets and the complex of nested sets associated to an arbitrary set system and the M-extension of a game for this set. For a set system being a building set or partition system, the corresponding complex is a polyhedral complex, and the vertices of this complex correspond to maximal strictly nested sets. To each maximal strictly nested set is associated a rooted tree. Given characteristic function, to every maximal strictly nested set a marginal value is associated to a corresponding rooted tree as in [9]. We show that the same marginal value is obtained by using the M-extension for every permutation that is associated to the rooted tree. The GC-solution is defined as the average of the marginal values over all maximal strictly nested sets. The solution can be viewed as the gravity center of the image of the vertices of the polyhedral complex. The GC-solution differs from the Myerson-kind value defined in [2] for union stable structures. The HS-solution is defined as the average of marginal values over the subclass of so-called half-space nested sets. The NT-solution is another solution and is defined as the average of marginal values over the subclass of NT-nested sets. For graphical buildings the collection of NT-nested sets corresponds to the set of spanning normal trees on the underlying graph and the NT-solution coincides with the average tree solution. We also study core stability of the solutions and show that both the HS-solution and NT-solution belong to the core under half-space supermodularity, which is a weaker condition than convexity of the game. For an arbitrary set system we show that there exists a unique minimal building set containing the set system. As solutions we take the solutions for this building covering by extending in a natural way the characteristic function to it by using its Möbius inversion.Core;polytope;building set;nested set complex;Möbius inversion;permutations;normal fan;average tree solution;Myerson value

    Subtraction-free complexity, cluster transformations, and spanning trees

    No full text

    Discrete convexity and unimodularity. I

    Get PDF
    In this paper we develop a theory of convexity for a free Abelian group M (the lattice of integer points), which we call theory of discrete convexity. We characterize those subsets X of the group M that could be call "convex". One property seems indisputable: X should coincide with the set of all integer points of its convex hull co(X) (in the ambient vector space V). However, this is a first approximation to a proper discrete convexity, because such non-intersecting sets need not be separated by a hyperplane. This issue is closely related to the question when the intersection of two integer polyhedra is an integer polyhedron. We show that unimodular systems (or more generally, pure systems) are in one-to-one correspondence with the classes of discrete convexity. For example, the well-known class of g-polymatroids corresponds to the class of discrete convexity associated to the unimodular system A_n:={\pm e_i, e_i-ej} in Z^n.Comment: 26 pages, Late
    • …
    corecore