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Abstract

In this paper we develop a theory of convexity for the lattice of integer points Zn; which we

call theory of discrete convexity. Namely, we characterize classes of subsets of Zn; which

possess the separation property, or, equivalently, classes of integer polyhedra such that

intersection of any two polyhedra of a class is an integer polyhedron (need not be in the class).

Specifically, we show that these (maximal) classes are in one-to-one correspondence with pure

systems. Unimodular systems constitute an important instance of pure systems. Given a

unimodular system, we construct a pair of (dual) discretely convex classes, one of which is

stable under summation and the other is stable under intersection.
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1. Introduction

In this paper we develop a theory of convexity for the lattice of integer points Zn;
which we call theory of discrete convexity.

What subsets XCZn could be called ‘‘convex’’? One property seems indisputable:
X should coincide with the set of all integer points of its convex hull coðX Þ: We call
such sets pseudo-convex. The resulting class PC of all pseudo-convex sets is stable
under intersection but not under summation. In other words, the sum X þ Y of two
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pseudo-convex sets X and Y needs not be pseudo-convex. We should consider
subclasses of PC in order to obtain stability under summation.

As we show stability under summation is closely related to another question: when
the intersection of two integer polytopes is an integer polytope? Beginning from the
paper [7], it is known that the class of generalized polymatroids has this property.
Let us define a PM-set in Zn as the set of integer points of some (integer) g-
polymatroid. Then the class of all PM-sets is a class of discrete convexity (DC-class).
Specifically, the sum of PM-sets is a PM-set, and non-intersecting PM-sets can be
separated by some linear functional. This class of sets was studied by Murota [14]. In
series of papers [10,15,16] was developed discrete convex analysis based on this DC-
class and its dual DC-class.

On a way of developing theory of discrete convexity at least two questions arise:
(1) Can we extend the class of PM-sets without losing in the process the nice

properties which precisely made us consider it at the very beginning?
(2) Do other classes exist which exhibit similar properties? If so, how are they to be

constructed or described?
Answers on these questions (‘No’ on the first one and ‘Yes’ on the second) rest on

a relation of the discrete convexity with unimodular systems. The latter are nothing
but invariant versions of totally unimodular matrices (we discuss their properties in
Section 5). Every unimodular system R defines a class PtðR;ZÞ of integer polytopes
which possesses two properties:

(a) it is stable under summation;
(b) the intersection of any two polytopes from PtðR;ZÞ is an integer polytope.

The class PtðR;ZÞ consists of those integer polytopes all edges of which are
parallel to some elements of R: Moreover, any ample class of integer polytopes with
the properties (a) and (b) has such a form.

For example, the class of g-polymatroids corresponds to the unimodular system
An in Zn which consists of vectors 7ei and ei � ej ; i; j ¼ 1;y; n: Since this system is

maximal as a unimodular system, we obtain the negative answer on the question 1).
However, there are many other (maximal) unimodular systems (see [2]) what gives
many other classes of discrete convexity.

The classes PtðR;ZÞ (as well as the class of integer g-polymatroids) are stable
under summation but not under intersection. Given an unimodular system R one
can construct another (dual) class of discrete convexity which is stable under
intersection (but not under summation). We show in Theorem 3 that the theory
becomes enough poor if to require stability DC-classes under summation as well as
under intersection.

It is worth to note that in sequel we develop the theory of discrete convexity not
only for polytopes but for polyhedra as well. Because of this we find more convenient
to work with pure systems instead of unimodular systems. Though, most interesting
examples are related to the latter ones.

The paper is organized as follows. In Section 2 we consider several properties
which one could want to require from a ‘‘good’’ theory of discrete convexity. We find
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that all of them are in essence equivalent. In Section 3 we introduce so called pure
systems and discuss their properties. In Section 4 we construct classes of discrete
convexity via the pure systems. Sections 5 and 6 are devoted to an important instance
of pure systems, namely to unimodular systems. Each such a system enables us to
construct a pair of (dual) DC-classes, one of which is stable under summation and
the other is stable under intersection, and these classes contain ‘‘many’’ finite sets. In
Section 7 we discuss an issue on defining of polytopes from PtðRÞ by means of linear
inequalities.

In a separate paper [5] we plan to develop corresponding theory of discretely
convex functions based on our theory of discrete convexity.

Finally, we want to point out that recently theory of discrete convexity
unexpectedly shown its importance in areas far from discrete mathematics, such as
in mathematical economics [6], for a solution of the Horn problem [4], for modules
over discrete valuations rings [3], in theory of representation of groups.

Notations. In the sequel M denotes a free Abelian group of finite type.1 V ¼
M#RDRn denotes the ambient vector space. Elements of M are called integer

points of V : Given a subset PCV ; we denote by PðZÞ ¼ P-M the set of integer
points of P:

M� ¼ HomðM;ZÞ denotes the dual group, that is the group of homomorphisms
of Abelian groups M-Z: V� ¼ M�#R is the dual vector space to V : For QCV�;
we put QðZÞ ¼ Q-M�:

Let X ;Y be subsets of V: Then X þ Y ¼ fx þ y; xAX ; yAYg denotes the
(Minkowski) sum of X and Y ; X � Y is understood in a similar fashion. coðXÞ
denotes the convex hull of X in V : ZðX Þ is the Abelian subgroup in V generated by
X ; that is the set of linear combinations of the form

P
xmxx; where xAX and mxAZ:

RX denotes the vector subspace generated by X :

2. Discrete convexity: the basics

The issue here is to characterize those subsets X of a group M (DZn) that we
would be willing to call ‘‘convex’’.

Definition. A subset XCM is said to be pseudo-convex if X ¼ coðXÞðZÞ and coðXÞ is
a polyhedron.

Recall that a polyhedron is the intersection of some finite collection of closed half-
spaces of V : For example, a linear sub-variety of V ; or a polytope (the convex hull of
some finite subset in V ) is a polyhedron. For more details about polyhedra, see [11]
or [17].

We denote by PC the set of pseudo-convex sets.
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Definition. A polyhedron PCV is rational if it is given by a finite system of linear
inequalities of the form pðvÞpa where pAM� and aAZ: A polyhedron P is called
integer if it is rational and if every (non-empty) face of P contains an integer point.

For example, a polytope is integer if and only if all its vertices are integer points.

Proposition 1. Suppose XCM: The following assertions are equivalent:

(a) X is pseudo-convex;
(b) X ¼ PðZÞ for some integer polyhedron PCV ;
(c) X is the set of integer solutions of a finite system of linear inequalities with integer

coefficients.

Proof. Implication (a) ) (b) is almost obvious; it suffices to take P to be coðX Þ:
Implication (b) ) (c) is obvious. Finally, implication (c) ) (a) is precisely Meyer’s
theorem (see, for example, [18, Theorem 16.1]). &

Denote by IPh the class of all integer polyhedra in V : By Proposition 1, we have
the natural bijection between the classes IPh and PC; which is given by the
mappings P/PðZÞ and X/coðX Þ: Both these classes are stable under integer
translations (X/X þ m; mAZn), under the reflection (X/� X ), and under taking
faces ( X/X-F ; where F is a face of the polyhedron coðX Þ). Furthermore, the
class PC is stable under intersection and is not stable under summation, whereas the
class IPh is stable under summation and is not stable under intersection (the sum of
two pseudo-convex sets needs not be pseudo-convex, while the intersection of integer
polyhedra need not be integer).

Indeed, let us consider the following simple example in Z2: Suppose X ¼
fð0; 0Þ; ð1; 1Þg and Y ¼ fð0; 1Þ; ð1; 0Þg: Both X and Y are pseudo-convex. Despite
that X and Y do not intersect, they can not be separated by a linear functional (or a
hyperplane).

This example suggests that in order to have the separation property in theory of discrete
convexity, we need to consider narrower classes of subsets of M than the class PC:

We say that a class KCPC is ample if K is stable under (a) integer translations,
(b) reflection, and (c) faces. In the same way we understand ampleness of a
polyhedral class PCIPh:

Proposition 2. Let KCPC be an ample class. The following four properties of K are

equivalent:
(Add) for every X ;YAK the sets X7Y are pseudo-convex;
(Sep) if sets X and Y of K do not intersect, then there exists (integer) linear

functional p : V-R such that pðxÞ4pðyÞ for any xAX ; yAY ;
(Int) if sets X and Y of K do not intersect, then the polyhedra coðX Þ and coðY Þ do

not intersect as well;
(Edm) for every X ;YAK the polyhedron coðXÞ-coðY Þ is integer.
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Proof. (Add) ) (Sep): If X and Y have an empty intersection, then 0eX � Y : Since
the set X � Y is pseudo-convex, 0 does not belong to the polyhedron coðX � Y Þ ¼
coðXÞ � coðY Þ: Hence there exists a linear (integer) functional p : V-R which is
strictly positive on coðX � Y Þ: Therefore pðxÞ4pðyÞ for xAX and yAY :

(Sep) ) (Int): This one is obvious.
(Int) ) (Add): Let us show that X � Y is pseudo-convex. Since coðX � Y Þ ¼

coðXÞ � coðY Þ is a polyhedron, we need to prove that X � Y ¼ coðX � Y Þ-M:
Suppose the integer point m lies in coðX � Y Þ ¼ coðXÞ � coðYÞ: Then the polyhedra
coðXÞ and m þ coðYÞ ¼ coðm þ YÞ intersect. Applying (Int) to the sets X and
m þ Y ; we see that these sets also intersect, that is mAX � Y :

(Edm) ) (Int): This implication is obvious.
(Int) ) (Edm): Suppose X ;YAK; P ¼ coðX Þ; Q ¼ coðY Þ: We need to show that

P-Q is an integer polyhedron. Obviously P-Q is rational. Therefore, we need to
establish that every (non-empty) face of P-Q contains an integer point. We assume
here, without loss of generality, that the face is minimal.

Suppose F is a minimal (non-empty) face of the polyhedron P-Q: Let P0 (resp.
Q0) be a minimal face of P (resp. Q) which contains F : We claim that F ¼ P0-Q0:

Projecting V along F ; we may suppose additionally that F is of dimension 0: That
is F consists of a single point, which is a vertex of P-Q: Suppose, on the contrary,
that P0-Q0 contains some other point a: Since the point F is relatively interior both
in P0 and in Q0; then F is an interior point of some segment ½a; b�; lying in both P0 and
Q0: But in such a case the segment ½a; b�CP0-Q0CP-Q; and F can not be a vertex
of P-Q: Contradiction.

Thus, F ¼ P0-Q0: Since our class K is stable under faces, the sets P0ðZÞ and
Q0ðZÞ belong to K: The property (Int) implies that the sets P0ðZÞ and Q0ðZÞ
intersect. Because of this, F is an integer singleton. &

Definition. An ample class KCPC is a class of discrete convexity (or a DC-class) if it
possesses anyone of the properties from Proposition 2.

On the language of integer polyhedra, the definition of discrete convexity is
formulated as follows. A class P of integer polyhedra is a polyhedral class of discrete

convexity if it is ample and the following variant of the Edmonds’ condition holds:

ðEdm0Þ The intersection of any two polyhedra from P is an integer polyhedron
(not necessarily in P).

According to Proposition 2, the equivalent requirement is:

ðAdd0Þ ðP þ QÞðZÞ ¼ PðZÞ þ QðZÞ for every P;QAP:
Let us give a few examples of DC-classes.

Example 1. (One-dimensional case). Let MDZ: Then the class PC of all pseudo-
convex sets is a DC-class. This is not the case in higher dimensions of course.

The class of integer rectangles in the plane R2 is a DC-class. More generally, if K1

and K2 are DC-classes in the groups M1 and M2; respectively, then the class of sets
of the form X1 
 X2 with XiAKi; i ¼ 1; 2; is a DC-class in M1 
 M2 as well.

ARTICLE IN PRESS
V.I. Danilov, G.A. Koshevoy / Advances in Mathematics 189 (2004) 301–324 305



Example 2. (Hexagons). Let us consider a more interesting class H of polyhedra in

R2: It consists of polyhedra defined by the inequalities a1px1pb1; a2px2pb2;
cpx1 þ x2pd; where a1; a2; b1; b2; c and d are integers. It is easy to check that this
hexagon (generally speaking, this hexagon can be degenerated to a polyhedron with
smaller number of edges) has integer vertices. Obviously, H is stable under integer
translations, reflection and faces. Since the intersection of hexagons yields a
hexagon, we conclude that H is a polyhedral DC-class.

Example 3. (Base polyhedra). This is one of the possible high-dimensional

generalizations of Example 2. Let N be a finite set, and V ¼ ðRNÞ�: We interpret

elements of V as measures on the set N: Recall, that a function b : 2N-R,fþNg is
called submodular if, for any S; TCN; the following inequality holds

bðSÞ þ bðTÞXbðS,TÞ þ bðS-TÞ:

The elements of V can be viewed as modular functions, i.e., functions which fulfill
the above-written definition of submodularity with equality.

A base polyhedron is a polyhedron of the following form:

BðbÞ ¼ fxAV j xðSÞpbðSÞ; SCN; and xðNÞ ¼ bðNÞg;

where b is a submodular function. Obviously, the class B; which consists of base
polyhedra with integer-valued b; is stable under integer translations and under
reflection. One can show that it is stable under faces, and hence, each base
polyhedron has integer vertices. The well-known theorem by Edmonds [7] ensures
that property (Edm) obtains, and thus B is a polyhedral DC-class. The reader will
find details of the proofs of these properties of base polyhedra in [9], or see our
Example 13.

Example 4. Here we give another high-dimensional generalization of Example 2. Let

N be a finite set, and let V ¼ RN be the space of real-valued functions on N:
Consider the class L of polyhedra in V ; given by the inequalities of the form
aipxðiÞpbi and aijpxðiÞ � xðjÞpbij; where i; jAN; and all a’s and b’s are integers.

We claim that these polyhedra are integer. Indeed, their vertices are given by
equalities of the form xðiÞ ¼ ci and xðiÞ � xðjÞ ¼ cij where c’s are integers. It is clear

that x is an integer point.

Thus, the class L consists of integer polytopes. Since it is stable under

intersection, the axiom ðEdm0Þ is satisfied automatically, and L is a polyhedral
DC-class.

We give a general construction of DC-classes in Section 4.
In the classical context, convexity is preserved under summation and under

intersection. It would be natural therefore to require these properties for the discrete
set-up. For example, both the classes of segments and hexagons and their products
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possess these properties. Moreover (see Theorem 3), these cases exhaust DC-classes,
stable under both summation and intersection. The class B described in Example 3 is
stable under summation, but not under intersection (if jNj43). Similarly, the class
L described in Example 4 is stable under intersection, but not under summation (if
jNj42). Therefore, when we consider classes stable under summation and classes
stable under intersection separately, more interesting theory of discrete convexity is
obtained.

Definition. An ample class K of pseudo-convex sets is called an S-class if X þ YAK
for any X ;YAK:

In particular, X � YAPC for any X ;YAK; and, thus, any S-class is a DC-class.
However in order to characterize polyhedral S-classes, we have to require both that

the class be stable under summation and axiom ðAdd0Þ be satisfied. Note that the
intersection of two polyhedra of a polyhedral S-class is an integer polyhedron, but
need not be a polyhedron of this class.

Definition. An ample class P of integer polyhedra is called a polyhedral I-class if
P-QAP for any P;QAP:

Again any I-class is a DC-class, since the axiom ðEdm0Þ holds. Let P and Q be
polyhedra in an I-class, then PðZÞ þ QðZÞ is a pseudo-convex set, though P þ Q

need not be a polyhedron of this class.

3. Pure systems

Linear subspaces are the simplest polyhedra. For a (rational) vector subspace
FCV the set S ¼ FðZÞ of all integer points of F is an Abelian subgroup of M: Such
subgroups of M are called pure. Let us collect some properties of pure subgroups (of
M) in the following simple

Lemma 1. Let S be a subgroup of a free Abelian group of finite type M: The following

assertions are equivalent:

(1) S is a pure subgroup;
(2) S is a pseudo-convex subset of M;
(3) the factor group M=S is torsion-free;
(4) the factor group M=S is a free Abelian group.

In general, the sum of pure subgroups of M need not be a pure subgroup of M:

For example, if M ¼ Z2; S ¼ Zð1; 1Þ; S0 ¼ Zð1;�1Þ then the group S þ S0 has the
index 2 in M:
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Definition. Pure subgroups S and S0 of M are called mutually pure if the sum S þ S0

is a pure subgroup of M: Two (rational) linear subspaces L and L0 of V are mutually

pure if the subgroups LðZÞ and L0ðZÞ are mutually pure.

There is the following criterion of the mutual purity.

Lemma 2. Let S1 and S2 be two pure subgroups of M: They are mutually pure if and

only if the image of natural homomorphism S1-M=S2 is pure.

Proof. The factor group ðM=S2Þ=ðImðS1ÞÞ is canonically isomorphic to
M=ðS1 þ S2Þ: &

Pure subgroups naturally come in play in the study of DC-classes. Suppose we
have a pseudo-convex subset X in M: Then we can consider the linear subspace
TanðX Þ :¼ RðX � XÞ in V (the ‘‘tangent space’’ of X ) and the subgroup S ¼
ZðX � X Þ in M: Of course, SCTanðXÞðZÞ; and in the general case this inclusion is
proper. Hence, in the general case, S needs not be a pure subgroup of M:
Nevertheless, there is an instance when we can guarantee the purity of S:

For a natural number n and XCM; we denote by ½n�X the sum of n copies of X ;
for example, [2] X ¼ X þ X :

Proposition 3. Let XCM: Suppose that ½n�X is a pseudo-convex set for every

n ¼ 1;y: Then the subgroup ZðX � XÞ is pure.

Proof. Changing X to ½n�X for an appropriate n; one can assume that X contain
a point a which belongs to the relative interiority of coðX Þ: Changing X by X � a;
one can assume that 0 belongs to the relative interiority of coðXÞ: In that case
ZðX � XÞ ¼

S
nX1½n�X : It remains to note that an increasing union of pseudo-

convex sets is a pseudo-convex set. &

Given an ample class K of pseudo-convex sets, we can associate to it the following
system UðKÞ of linear subspaces in V (the homogenization of K). Namely,

UðKÞ ¼ fTanðX Þ; XAKg:

Similarly we define the system of vector subspaces UðPÞ for an ample polyhedral
class P:

Definition. A collection U of linear subspaces in V is called a pure system if any
F ;GAU are mutually pure subspaces. Elements of a pure system are called flats.

The homogenization of DC-classes produces pure systems. Say that an ample class
P of integer polyhedra is very ample if it contains the polyhedron nP with any integer
n and any polyhedron PAP:
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Proposition 4. Let P be a very ample DC-class P of integer polyhedra. Then UðPÞ is a

pure system.

Proof. Let F ¼ TanðPÞ and G ¼ TanðQÞ; where P;QAP: We have to show that the
subgroup FðZÞ þ GðZÞ is pure. Of course, this subgroup contains the subgroup
ZððA þ BÞ � ðA þ BÞÞ; where A ¼ PðZÞ and B ¼ QðZÞ: According to Proposition 3,
it suffices to check that the set ½n�ðA þ BÞ ¼ ½n�A þ ½n�B is pseudo-convex for any
n ¼ 1;y:

Since the class P is discretely convex, the set A þ A is pseudo-convex and
coincides with 2PðZÞ: Similarly, for any n; ½n�A ¼ ðnPÞðZÞ as well as ½n�B ¼ nQðZÞ:
At last, ½n�A þ ½n�B ¼ nPðZÞ þ nQðZÞ ¼ ðnP þ nQÞðZÞ is a pseudo-convex set since
nP and nQ belong to P: &

In the next section we show how to dehomogenize pure systems.
A pure system U is said to be a pure S-system (correspondingly, a pure I-system) if

F þ G (correspondingly, F-G) belongs to U for any F ;GAU: It is clear that
the homogenization of an S-class is a pure S-system, and the homogenization of
an I-class is a pure I-system.

Let us illustrate the homogenization procedure on the class B of base polyhedra
from Example 3.

Example 5. (The homogenization of base polyhedra). Recall, that here V ¼ ðRNÞ� is
the space of measures on a finite set N: Let BðbÞ be the base polyhedron defined by a

submodular function b : 2N-R,fþNg: We are going to show how the
corresponding tangent space TanðBðbÞÞ looks like. Here we can assume that BðbÞ
is a symmetric (with respect to the origin 0) base polyhedron. This means that
bðSÞ ¼ bðN\SÞ; in particular, bðNÞ ¼ 0: It is clear, that nBðbÞ ¼ BðnbÞ: Therefore
the tangent space TanðBðbÞÞ is the base polyhedron BðNbÞ; that is given by
the following list of equations

xðSÞ ¼ 0; SAFðbÞ;

where FðbÞ ¼ fSCN; bðSÞ ¼ 0}. Obviously, |;NAFðbÞ: The symmetry of BðbÞ
implies that N\SAFðbÞ with any SAFðbÞ: Submodularity of b implies that S,T

and S-T belong to FðbÞ with any S;TAFðbÞ: Thus, FðbÞ is a Boolean subalgebra

of 2N :
We see that to give a flat of UðBÞ is the same as to give a Boolean subalgebra of

2n; or is the same as to give an equivalence relation E on N: The corresponding flat
FðEÞ consists of measures xAV such that xðSÞ ¼ 0 for each equivalence class S of
the relation E: The codimension of this flat FðEÞ is equal to the number of
equivalence classes of E:

Let us consider, for instance, one-dimensional flats. These flats correspond to
those equivalence relations which possess a single class of equivalence of
cardinality 2; whereas all others classes are of cardinality 1: For example the one-
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dimensional flat Rðei � ejÞ corresponds to the equivalence relation whose 2-element

class of equivalence is fi; jg: Here ðeiÞ; iAN; denote the Dirac measure at the point
iAN:

Similarly, flats of codimension 1 correspond to dichotomous equivalence relations
(i.e., relations with only two equivalence classes, say T and N\T).

We denote UðAðNÞÞ this pure system.

Let us return to general pure systems. There holds the following finiteness
property.

Proposition 5. Any pure system is a finite set.

Proof. Let U be a pure system of pure subgroups in M: Let F2 be the 2-elements
field. For any pure subgroup S in M we can consider the corresponding F2-vector
subspace S#F2 in the vector space M#F2: It is clear that the dimension of S#F2 is
equal to the rank of S (that is the dimension of S#R).

We assert that for different S;S0AU their images S#F2 and S0#F2 are also
different. Suppose that S#F2 ¼ S0#F2: Then ðS þ S0Þ#F2 ¼ ðS#F2Þ þ
ðS0#F2Þ ¼ S#F2: Since S þ S0 is pure then the rank of S þ S0 is equal to the
rank of S (and is equal to the rank of S0). Therefore S ¼ S þ S0 ¼ S0: &

Dualization. Now we discuss a construction of a dual (or orthogonal) pure system.

For a vector subspace L of V ; let L> denote the orthogonal vector subspace of the
dual vector space V�; that is

L> ¼ fpAV �; pðvÞ ¼ 0 for any vALg:

Theorem 1. Let L and L0 be mutually pure subspaces of V : Then L> and L0> are

mutually pure subspaces of V�:

For proving this theorem, it is convenient to use the notion of a pure
homomorphism. Let M and N be free Abelian groups of finite type. Let us
say that a homomorphism f : M-N is pure if the factor group N=f ðMÞ is a free
(or torsion-free) Abelian group. This means, of course, that f ðMÞ is a pure subgroup
in N:

Lemma 3. A homomorphism f : M-N is pure if and only if the dual homomorphism

f � : N�-M� is pure.

Proof. Let us consider the canonical decomposition of the homomorphism
f : M-N in two exact sequences

0-K-M-H-0; and 0-H-N-C-0:
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Since f is pure, C is a free Abelian group. The group H is free as a subgroup of the
free group N: Therefore, both sequences are split. Hence the dual sequences

0-C�-N�-H�-0; 0-H�-M�-K�-0

are exact (where X � ¼ HomðX ;ZÞ). Since K� is free, we obtain that f � : N�-M� is
pure. &

Proof of Theorem 1. Set S ¼ LðZÞ; and similarly S0 ¼ L0ðZÞ: It is obvious that

L>ðZÞ is equal to S> ¼ fpAM�; pðsÞ ¼ 0 8sASg: That is that S> is the kernel of the
canonical projection M�-S� being dual to the inclusion S-M: It is clear from this,

that ðS>Þ� can be identified to M=S:

We have to show that the subgroup S> þ S0> is pure in M�: That is, by

Lemma 2, that the canonical homomorphism S>-M�=S0> is pure. By

Lemma 3, it suffices to check that the dual homomorphism ðM�=S0>Þ�-ðS>Þ� is
pure. The latter homomorphism can be identified to the canonical homomorphism

S0>-M=S: But this homomorphism is pure because S and S0 are mutually pure
subgroups. &

Corollary. Let U be a pure system in V : Then the collection U> :¼ fL>;LAUg is a

pure system in V�:

4. Construction of DC-classes

In the previous section, we constructed pure systems via the homogenization of
(very ample) DC-classes. Here we shall go in the opposite direction.

Let U be a pure system in V : If we collect all integer translations of flats of U; we
get a polyhedral DC-class. However, this class is of a little interest. For instance, it
contains no polytopes (except, may be, zero-dimensional ones). Below we define a
more interesting (maximal) DC-class PhðU;ZÞ of integer polyhedra associated to
a given pure system U:

Definition. Let U be a collection of (rational) vector subspace in V : A polyhedron P

is said to be U-convex (or U-polyhedron) if, for any face F of P; the tangent space
TanðFÞ ¼ RðF � FÞ belongs to U:

Let PhðUÞ be the set of U-polyhedra, and let PhðU;ZÞ be the set of integer U-
polyhedra. Note that the class PhðU;ZÞ is stable under integer transla-
tions, reflection and faces. In other words, it is an ample (and even very
ample) class of integer polyhedra. The homogenization of PhðU;ZÞ returns us
back to U:

The following result will be used in the sequel.
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Proposition 6. Let PAPhðU;ZÞ; and L be an integer vector subspace in V : Suppose

that L is mutually pure with any subspace of U: Then the intersection P-L is an

integer polyhedron.

Proof. Let g be a minimal face of P-L; we have to show that g is an integer
polyhedron. In fact, g is an affine subspaces in V because it has no faces. Changing P

to its minimal face containing g; we may assume that g ¼ P-L: Let aff(P) denote the
affine span of P: Then we have affðPÞ-L ¼ g: But affðPÞ is an integer translation of
the linear subspace RðP � PÞ: Therefore we can assume that P is an integer
translation of a linear subspace L0 in V ; say P ¼ L0 þ m for some mAM:

Now we can repeat the reasoning from Proposition 2. If L and L0 þ m do not
intersect, then the assertion is obviously true. Let xAL-ðL0 þ mÞ; that is xAL and
x ¼ x0 þ m; x0AL0: Then m ¼ x � x0 is an integer point of L � L0: Since L and L0 are
mutually pure, mALðZÞ � L0ðZÞ: That is, there exists an integer point lAL such that
l þ mAL0: &

Now we show that if U is a pure system, then PhðU;ZÞ is a DC-class.

Theorem 2. A class PhðU;ZÞ is a DC-class of integer polyhedra if and only if U is a

pure system.

Proof. Since PhðU;ZÞ is a very ample, the ‘‘only if’’ part of this theorem was proven
in Proposition 4. Let us prove the ‘‘if’’ part.

More precisely, we shall show that the intersection of two polyhedra from the class
PhðU;ZÞ is an integer polyhedron. For this, we use a trick known in Algebraic
Geometry as ‘‘reduction to the diagonal’’. Namely, we replace the intersection of two
polyhedra P and Q by the intersection of their direct product P 
 Q with the linear
subspace D being the diagonal in V 
 V :

Let us consider in V 
 V the following system U
U of subspaces of the form
L 
 L0 where L;L0AU: Obviously, P 
 Q is U
U-polyhedron. The intersection
P 
 Q with the diagonal D consists of points of the form ðv; vÞ such that v belongs to
P-Q: Therefore to prove that P-Q is an integer polyhedron in V is the same as to
prove that ðP 
 QÞ-D is an integer polyhedron in V 
 V :

By virtue of Proposition 6, it suffices to check that the diagonal D is mutually pure
with any subspace L 
 L0 where L; L0AU: But this is equivalent to the mutual purity
of the subspaces L and L0: The latter property holds by the definition of pure
systems. &

Remark. Indeed the above arguments allow us to obtain the following more general

result. Let U and U0 be two systems of subspaces in V : Suppose that for every LAU

and L0AU0 the subspaces L and L0 are mutually pure. Then the intersection of any

integer U-polyhedron with any integer U0-polyhedron is an integer polyhedron.

Of course, if a pure system U is stable under summation (intersection) then the
corresponding class PhðU;ZÞ is an S-class (I-class).
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5. Unimodular systems

We have shown above, that pure systems play a crucial role in the description and
construction of DC-classes (of integer polyhedra in V or of pseudo-convex subsets in
M). The corresponding DC-classes contain, for example, all integer translations of
flats. However, if we want that a DC-class contains polytopes, we have to provide
that the corresponding pure system has ‘‘sufficiently many’’ one-dimensional flats.
This means that every flat of our system is generated (as a vector subspace) by one-
dimensional flats. Here we explain how to construct pure S-systems (and the dual
pure I-systems, see the next section) by means of unimodular systems.

Definition. A subset RCM is called unimodular if, for any subset BCR the
subgroup ZBCM is pure. A unimodular system is a pair ðM;RÞ where R is a
unimodular set in M: Non-zero elements of R are called roots.

We call flats (or R-flats) subspaces RB; where BCR: It is obvious that the set
UðRÞ of all R-flats is a pure S-system.

Unimodular systems are closely related to totally unimodular matrices, that is
matrices whose minors are equal to 0 or 71: Suppose that a unimodular set R is of
full dimension, or, equivalently, spans V : If we pick a basis BCR and represent
vectors of R as linear combinations of the basis vectors, then the matrix of
coefficients is totally unimodular. In particular, the coefficients of this matrix are
either 0 or 71; which proves finiteness of any unimodular set. Conversely, columns
of a totally unimodular n 
 m matrix yield a unimodular set in Zn: Thus unimodular
systems are nothing but coordinate-free representations of totally unimodular
matrices. The reader might find many other characterizations of totally unimodular
matrices in [18].

Consider some important examples of unimodular systems.

Example 6. In Example 5, we introduced the pure system AðNÞ; which is spanned by
one-dimensional flats Zðei � ejÞ; i; jAN: Therefore, the set of vectors ei � ej; i; jAN;

is a unimodular set in ðZNÞ�: Let us denote this system as well by AðNÞ: Note that it
is not of full dimension, since it spans the subspace fx; xðNÞ ¼ 0g; which is

orthogonal to the vector 1NARN : We shall show in Section 7 that the class
PhðAðNÞÞ coincides with the class of base polyhedra B from Example 3.

If we project the set AðN,f0gÞÞ along the axis Re0 onto the space ðRNÞ�;
we obtain the full-dimensional unimodular system consisting of the vectors 7ei

and ei � ej; i; jAN; in ðZNÞ�: Of course, we could construct this system

simply by adding the basic system ð7ei; iANÞ to the system AðNÞ: We denote this
system by AN : We shall show that AN-polyhedra are nothing but generalized
polymatroids.

Sub-systems RCAN (more precisely, symmetrical sub-systems, which contain 0
and �r for any rAR) are called graphic unimodular systems.
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Example 7. To any graph G one can associate another unimodular system, the so
called cographic unimodular system DðGÞ: It is located in the cohomology group

H1ðG;ZÞ of the graph G and consists of the cohomology classes 7½e�; corresponding
to oriented edges of the graph G: The proof of the unimodularity of the system DðGÞ
is based on the fact that this system is, in some (matroidal) sense, dual to the graphic
system associated with G:

Cubic (or 3-valent) graphs give the most interesting examples of cographic
systems. The simplest example of such a graph is the complete graph K4 with 4
vertices. The corresponding system DðK4Þ is isomorphic to A3: The bipartite
graph K3;3 yields a more interesting example. The system DðK3;3Þ consists of

the following 19 vectors in R4 : f0; 7ei; i ¼ 1;y; 4; 7ðe1 þ e2Þ; 7ðe2 þ e3Þ;
7ðe3 þ e4Þ; 7ðe4 þ e1Þ; 7ðe1 þ e2 þ e3 þ e4Þg:

One can check that DðK3;3Þ is not a graphic system.

Example 8. There is an exceptional unimodular system E5 in dimension 5 which
is neither graphic no cographic. It consists of the following 21 vectors: 0; 7ei;
i ¼ 1;y; 5; 7ðe1 � e2 þ e3Þ; 7ðe2 � e3 þ e4Þ; 7ðe3 � e4 þ e5Þ; 7ðe4 � e5 þ e1Þ;
7ðe5 � e1 þ e2Þg:

According to the Seymour theorem [19], every unimodular system can be
constructed via graphic systems, cographic systems, and the system E5:

Let ðM;RÞ and ðM 0;R0Þ be unimodular systems. A homomorphism of Abelian
groups j : M-M 0 is called a morphism of unimodular systems if jðRÞCR0: For
example, if j is the projection of M onto M 0 ¼ M=Zr; where rAR; then jðRÞ is a
unimodular set in M 0: The direct sum of unimodular systems ðM;RÞ and ðM 0;R0Þ is
a unimodular system ðM"M 0;R"R0Þ; where R"R0 ¼ R,R0:

The following theorem characterizes unimodular systems R whose pure systems
UðRÞ are stable under intersection. For such a system the corresponding DC-class
PðUÞ is simultaneously S-class and I-class.

Theorem 3. Let R be a unimodular set such that the pure system UðRÞ is stable under

intersection. Then R is the direct sum of copies of A1 and A2:

Proof. The proof is by induction on the dimension of unimodular systems. The
assertion is obvious in dimensions 1 and 2:

Consider first of all the case of dimension 3: Assume R contains a flat S

isomorphic to A2: Denote by e1; e2 and e1 þ e2 the vectors of R-S: We claim that
there is at most one more vector of R (up to collinearity). Suppose there are two non-
collinear vectors. Clearly we may denote them by e3 and e1 þ e3: Then, since UðRÞ is
stable under intersection, e2 � e3 and e1 þ e2 þ e3 belong to R: But this contradicts
unimodularity of R; and the claim is proven. Therefore, R is isomorphic to A1"A2:

One can similarly check that if R does not contain flats isomorphic to A2; then R
is isomorphic to A1"A1"A1: Thus, in the three-dimensional case, the proposition
is verified.
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General case. Let UðRÞ contain a flat S isomorphic A2: This means that S is a
plane of V such that R-SDA2: We will show that there exists a flat T of
codimension 2 in V such that

R ¼ ðR-SÞ,ðR-TÞ: ð1Þ

By induction R-T is equal to the sum of copies A1 and A2; and we have
R-SDA2; so if (1) is true, the proposition is also true.

Pick a flat T of UðRÞ of codimension 2 (in V ) such that T-S ¼ 0: Obviously such
a flat exists.

Claim. RCS,T :

Let us consider the projection p : V-S which has T as the kernel (the projection
along T). Then pðRÞ is a unimodular system of S which contains R-S: Because
R-SDA2 and the A2 is a maximal unimodular system, any vector rAR; which does
not belong to S,T ; is projected into some vector r1AR-S: Therefore, we have
r � r1AT : On the other hand, r � r1 belongs to the flat Rr þ Rr1: Since UðRÞ is
closed under intersection, the line ðRr þ Rr1Þ-T is an one dimensional flat of UðRÞ;
and, hence, there exists a vector r2AR which spans this flat.

Now we consider the three-dimensional subspace S þ Rr2 of V and the
unimodular system R-ðS þ Rr2Þ: Obviously, the pure system of this unimodular
system is closed under intersection. Therefore, R-ðS þ Rr2Þ is isomorphic to
A2"A1: Thus, there can be at most one generator outside of R-S: the vector r2:
However, we have another one: the vector ra7r2: A contradiction. Therefore
RCS,T and the claim is proven.

Finally, suppose that UðRÞ contains no flats isomorphic to A2: In such a case, we
assert that R equals the sum of n ð¼ dimVÞ exemplars A1: Let r1;y; rn be linear
independent elements of R: We show that there holds R ¼ f7r1;y;7rng: Assume
some rAR\f7r1;y;7rng: Clearly we may assume that there holds r ¼ r1 þyþ rn

(i.e. r does not belong to the coordinate hyperplanes). Let us consider the
intersection of flats Rr1 þ Rr2 and Rr þ Rr3 þyþ Rrn: This intersection is a line
Rðr1 þ r2Þ and it is a flat of UðRÞ: Therefore, we have r1 þ r2AR and, hence,
f7r1;7r2;7ðr1 þ r2ÞgCR; but f7r1;7r2;7ðr1 þ r2Þg is isomorphic to A2: A
contradiction. &

Of course, the largest possible DC-classes are of the most interest. Such DC-
classes correspond to maximal pure systems and maximal unimodular systems.

Definition. A pure system U in M is said to be maximal if for any subspace F ; not of
U; the system U,fFg is not a pure system. A unimodular system R is maximal if for
any reR the system of vectors R,r is not a unimodular.

Example 9. (The unimodular system An is maximal). Suppose that r ¼ ðr1;y; rnÞ is
an integer vector such that An,r is a unimodular system. Since An contains the

ARTICLE IN PRESS
V.I. Danilov, G.A. Koshevoy / Advances in Mathematics 189 (2004) 301–324 315



basic system f7ei; i ¼ 1;y; ng; all ri are equal to 0 or 71: We assert that for
any iaj there holds either rirj ¼ 0 or rirj ¼ �1: In fact, assume that rirj ¼ 1

holds for some iaj: Then consider the Abelian subgroup S generated by ek; kai; j;
ei � ej ; and r: The index of the subgroup S in M :¼ Zn is equal to the determinant

of the matrix

ri 1

rj �1

� �
;

that is 72: That contradicts to the purity of S: Therefore, r has at most two non-
zero coordinates, and in such a case these coordinates are of opposite signs. That
is rAAn:

Another useful way to say this is as follows. Let L be a (rational) line in Rn and let
r be the canonical projection of Rn onto V 0 ¼ Rn=L: Suppose L is such that the
image rðAnÞ is a unimodular system in V 0 (with respect to the integer structure
rðMÞ). Then L is generated by some rAAn; and the unimodular system rðAnÞ is
isomorphic to An�1:

We assert that An is not only maximal as a unimodular system but also the

corresponding pure system U ¼ UðAnÞ is maximal. For this we consider a vector
subspace F and suppose that F is mutually pure with any flat of U: We have to show
that F also is a flat of U:

Let us consider the canonical projection f of Rn onto the vector space V 0 ¼ Rn=F :
As above, the image fðAnÞ is a unimodular system in V 0: Let now k; 1pkpn; be

such that R ¼ Rk-F is an one-dimensional subspace. Let us consider the restriction

of f to Rk: Since the image of Ak is a unimodular set (as a subset of the unimodular
set fðAnÞ), we conclude that R is generated by some non-zero vector rAAkCAn:
Thus, F contains some root r of An:

Now we consider the projection r of Rn along Rr: For the space Rn=Rr we have a
similar case: a unimodular system R ¼ rðAnÞ isomorphic to An�1; and a vector
subspace F 0 ¼ rðFÞ which is mutually pure with flats of R: By induction, F 0 is a flat
of R: Therefore its pre-image F is a flat of An:

As a consequence, we obtain that the DC-class PhðAn;ZÞ of integer g-poly-
matroids is maximal.

Example 10. The unimodular system E5 is maximal too. However, the corresponding
pure system is not maximal. In order to see this, consider the following

homomorphism f : Z5-Z; fðx1;y; x5Þ ¼ x1 þ?þ x5: It is clear that fðrÞ ¼ 71
for any root rAE5: Therefore the kernel of f; that is the hyperplane H ¼
½x1 þ?þ x5 ¼ 0�; is mutually pure with any flat of R5:

One can show that the S-class PhðE5Þ consists of zonohedra, that is the sum of
segments (bounded or not) every of which is parallel to some root rAE5: We obtain
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that the intersection of two such integer zonohedra, or the intersection of a
zonohedron and the hyperplane H; is an integer polyhedron.

The pure system corresponding the maximal unimodular system DðK3;3Þ also is

not maximal. It can be expanded by adding some two-dimensional subspace.
An is a unique maximal unimodular system of dimension p3: In dimension 4;

besides A4; there is another maximal unimodular system DðK3;3Þ: In dimension 5;
there are 4 non-isomorphic maximal unimodular systems; there are 11 in dimension
6: For more details, we refer to the article [2], which contains a complete description
of maximal unimodular systems.

Let R be a unimodular system. Element r of R can be identified with morphisms
of A1 to R: Conversely, morphisms of R to A1 are called co-roots. In other words,
a co-root is a homomorphism of groups f : M-Z such that jfðrÞjp1 for any
root rAR: The set of co-roots is denoted by R�:

A polyhedron is an R-polyhedron if every of its face is parallel to some R-flat.
Denote by PhðR;ZÞ the S-class of integer R-polyhedra. A pseudo-convex set X in
M is said to be R-convex set if coðXÞ is a R-polyhedron.

6. Dual DC-classes associated to unimodular systems

Besides the S-class of R-polyhedra, we can associate to a unimodular system R a
dual I-class of integer �R-polyhedra (in the dual vector space V �).

Let R be a unimodular set in M; and let U ¼ UðRÞ be the corresponding pure S-
system in V : A polyhedron P in V� is called �R-convex (or �R-polyhedron) if it

belongs to PhðU>Þ; that is any face of P is orthogonal to some R-flat. In other
words, a �R-polyhedron is given by a system of linear inequalities (where p is a linear
functional on V )

pðrÞpaðrÞ; where rAR and aðrÞAR,fþNg:

The inverse is also true. If all entries aðrÞ are integer, the corresponding polyhedron

is integer. In fact, since the class U>-polyhedra is I-class, we have to prove that every
hyperplane HrðaÞ ¼ fpAV�; pðrÞ ¼ ag; where rAR and aAZ; contains an integer
point. But this is a consequence of primitiveness of r in M: (This is a kind of the
Hoffman–Kruskal theorem [12].)

Thus, the set of all integer �R-polyhedra is an I-class of discrete convexity. For
example, the class from Example 4 is the dual I-class corresponding to the
unimodular system An:

In order to ‘‘visualize’’ integer �R-polyhedra, it is convenient to use the notion of a
dicing [8]. A dicing is the following regular polyhedral decomposition of V�: Let us
consider the following countable (but locally finite) collection of hyperplanes
HrðaÞ ¼ fpAV�; pðrÞ ¼ ag; where rAR and aAZ: These hyperplanes split the space
V � into connected parts, the regions of the dicing. Regions are bounded sets if R is of
full dimension. The closure of any region, as well as any its face, is called a chamber

of the dicing. The set DðRÞ of the chambers form a polyhedral decomposition of V�;
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that is the chambers intersect by faces and cover the whole space V �: If R is of full
dimension, then the nodes of the dicing (that is zero-dimensional chambers) are
integer points of V �; i.e., are elements of M�:

Each chamber of the dicing DðRÞ is an integer �R-polyhedron. Conversely, any
integer �R-polyhedron is a union of chambers of DðRÞ: Thus, an integer �R-
polyhedron is nothing but a convex set composed of chambers.

Example 11. Let us consider the dicing star StðRÞ: It is composed of the chambers of
the dicing DðRÞ; which contain the origin 0: In order to establish the convexity of
StðRÞ; we show that

StðRÞ ¼ fpAV�; rðpÞp1; where rARg:

For the time being, we call St0 the polyhedron appearing on the right hand of the

formula. Obviously any chamber which contains 0 belongs to St0: Hence StðRÞCSt0:

Conversely, let pASt0\StðRÞ: Assume we move from p to 0 along the segment ½0; p�:
At some time t; 0oto1; the point tp will be on the boundary of StðRÞ: Hence, there
exists rAR with rðtpÞ ¼ 1: This implies that rðpÞ ¼ 1=t41; a contradiction.

From this description of StðRÞ we see that integer points of StðRÞ are the
co-roots of R;

StðRÞðZÞ ¼ R�:

Reversely, StðRÞ ¼ coðR�Þ:

The dual pure system U> ¼ UðRÞ> has the following structure. It consists of the

hyperplanes-mirrors Hrð0Þ ¼ ðRrÞ> and all possible intersections of the mirrors. As
well as a dicing, the mirrors cut the space V � onto a finite number of cones (the

cameras) which constitute the fan SðRÞ or R>: One-dimensional flats of U> are
called crossings as well as their primitive generators (of M�). (Of course, the crossings
exist only if the unimodular system R is of full dimension.) As an element of M�; a
crossing is a surjective homomorphism of Abelian groups x : M-Z such that the
kernel of x is a flat of R: Let us denote R3 the set of crossings in M�:

Lemma 4. R3CR�:

Proof. If R is not of full dimension, the set R3 is empty. Therefore we can assume
that R is of full dimension. Let x be a crossing, that is a surjective homomorphism

M-Z: Since the kernel x�1ð0Þ of x is a flat, the image xðRÞ is a unimodular system
in Z; that is x is a co-root. &

Remark. As Example 9 shows, for R ¼ An we have the equality R3 ¼ R�: For
other unimodular systems (such as E5) the crossings constitute a proper subset
of R�:
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In general case, the set R3 is not a unimodular system in M� (see Theorem 3).
However, if we can find a unimodular system Q in R3 (we call such Q a
laminarization of R), this brings us an advantage. Namely, in such a case we can
construct R-polyhedra simply as �Q-polyhedra. That is to define them by systems of
linear inequalities

fvAV ; xðvÞpaðxÞ; xAQg

with arbitrary ‘‘right parts’’ aðxÞ: Of course, when aðxÞ are integer, the corresponding
polyhedron is integer too. Let us give a more precise realization of this idea.

Example 12. (See also [9]). A family T of subsets of a finite set N is called laminar if

for any A;BAT; either ACB; or BCA; or A-B ¼ |: Without loss of generality, we
can assume that any singleton belongs to T:

Let T be a laminar family. We assert that the set Q ¼ f71T ; TATg is a

unimodular set in the space RN : That is Q is indeed a laminarization of the system

AN : Since the orthogonal hyperplanes ð1T Þ> are AN-flats, we have to check that
intersections of such hyperplanes are also AN-flats.

Let us recall (see Example 5) that an AN -flat takes the form

FðA1;y;AkÞ :¼ fxAðRNÞ�; xðAjÞ ¼ 0 for j ¼ 1;y; kg;

where A1;y;Ak are disjoint subsets of N: (The codimension of FðA1;y;AkÞ is

equal to the number of non-empty Aj’s.) In particular, the hyperplane ð1TÞ> is equal

to FðTÞ: Let us show that the intersection of hyperplanes FðT1Þ;y;FðTkÞ; where
TjAT; takes the form FðA1;y;AkÞ: For this we write Aj’s explicitly. Namely, Aj

is equal to Tj minus the union of those of Ti which are contained in Tj: Indeed,

using the laminarity of T; we can assume that the Ti’s do not intersect. Therefore,
xðTjÞ ¼ 0 is equivalent to xðAjÞ ¼ 0:

In particular, for a laminar family T in N; the polyhedron given by the
inequalities

aðSÞpxðSÞpbðSÞ; SAT;

is an AN -polyhedron for any functions a; b :T-R,fNg; and is an integer AN-
polyhedron for integer-valued a and b:

7. Exterior description of U-polytopes

In this section we characterize support functions of U-polyhedra, where U is a
pure system. As we know support functions of base polyhedra are closely related to
submodularity. Because of this, support functions of R-polyhedra give rise to a
generalization of submodularity.
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Recall that the support function of a (non-empty) closed convex set ACV is the
function fðA; �Þ : V �-R,fþNg on the dual space V� given by the following
formula

fðA; pÞ ¼ sup
xAA

pðxÞ; pAV�: ð2Þ

Let us work in a setting with compact sets in order to avoid messing up with infinite
values. In this setting the support function is defined on whole the space V� and is
homogeneous and convex. Conversely, every homogeneous convex function f on V �

is the support function of the subdifferential of f ;

@ðf Þ :¼ fxAV j xðpÞpf ðpÞ 8 pAV�g: ð3Þ

The set @ðf Þ is non-empty, convex, and compact; and the operations f and @ are
dual: @ðfðAÞÞ ¼ A and fð@f Þ ¼ f (see, for example, [17]).

Support functions of polytopes are characterized by a ‘‘piece-wise linearity’’
property. It is convenient to use the notion of fan here.

A fan (in V �) is a finite collection S of polyhedral cones possessing the following
three properties: (a) the cones sAS cover V �; (b) every face of any sAS is also in S;
(c) the intersection of two cones of S is a face of each of them. For example, in the
previous section we have defined the fan SðRÞ:

A convex function f on V � is compatible with a fan S if f is linear on every cone s
from S: In this case, it is easy to show that @ðf Þ is a polytope. More precisely, let s be
a full-dimensional cone of the fan S; denote by vs a (unique) linear function on the
space V�; which coincides with f on the cone s: Then vs (being considered as an
element of V ) is a vertex of the polytope @ðf Þ: And all vertices of the polytope are of
that form. In particular, a polytope P is integer if and only if its support function
fðP; �Þ has integer values in integer points. However, in this section, we shall not deal
with the integer-valuedness.

The support function of any polytope P is compatible with the following fan
NðPÞ: Given a point xAP; the following cone in the dual space V�

Con�ðP; xÞ ¼ fpAV �; pðxÞXpðyÞ 8yAPg

is said to be the cotangent cone to P at x: The collection of all cotangent cones
Con�ðP; xÞ; xAP; forms the cotangent fan (or the normal fan) NðPÞ of the polytope
P: For example, the cotangent fan of the zonotope

P
rAR coðf�r; rgÞ coincides with

the arrangement fan SðRÞ: Cones of normal fan NðPÞ one-to-one correspond to
faces of P: Moreover, they are orthogonal one to other.

In particular, this establishes the following

Proposition 7. Let U be a pure system in V ; and let PCV be a convex polytope. The

following assertion are equivalent:

(a) P is a U-convex polytope;
(b) the normal fan NðPÞ consists of U>-cones.
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When a pure system U is generated by a unimodular system R; we can
say a bit more. In this case there is the finest �R-convex fan SðRÞ: And a
polytope P is R-convex if and only if its support function is compatible with the
fan SðRÞ:

One can get also the following characterization of R-polytopes.

Proposition 9. A polytope P is R-convex if and only if there exists a polytope P0 such

that P þ P0 is an R-zonotope.

Proof. It is clear that any edge of P is parallel to some edge of P þ P0: Therefore P is
an R-polytope. This prove the ‘‘if’’ part of the statement.

Conversely, let P be a R-polytope. Then the arrangement fan SðRÞ is a refinement
of the normal fan NðPÞ: Since the normal fan of an R-zonotope is SðRÞ; the
assertion follows from the following

Lemma 5 (Grünbaum [11]). For polytopes P and Q the following assertions are

equivalent:

(a) NðQÞ is a refinement of NðPÞ;
(b) there exists a polytope P0 such that P þ P0 ¼ kQ; for some kX0:

Assume now that R is a full-dimensional unimodular system, and that R3 is the
set of crossings in M�: A function f ; compatible with the fan SðRÞ is uniquely
determined by its restriction on R3; that is by the family of real numbers
ðf ðxÞ; xAR3Þ: However, the values f ðxÞ; xAR3; are not arbitrary. Being the
restriction of a convex function, they have to satisfy some kind of ‘‘sub-
modularity’’ relations. These relations may be divided into two groups. The first
group of relations addresses the functions’ linearity on each cone of the fan. The
second group of the relations yields convexity. Let us formulate these relations more
explicitly:

I. Suppose that crossings x1;y; xmAR3 belong to a cone sASðRÞ: Then any
linear relation

P
i aixi ¼ 0 should imply the similar relation

P
i aif ðxiÞ ¼ 0:

Of course, if the cone s is simplicial (as in the case of An), these relations
disappear.

II. Suppose that we have two adjacent (full-dimensional) cones s and s0 of the fan,

separated by a wall t: Let t be spanned by the crossings x1;y; xm; and let x; x0 be
crossings from s; s0 respectively, which do not belong to the wall t: Then any relation

axþ a0x0 ¼
P

i aixi; where a; a040; implies the relation af ðxÞ þ a0f ðx0ÞX
P

i aif ðxiÞ:
(According to Lemma 4, we can assume that a ¼ a0 ¼ 1:)

However these relations do not look too inspiring. In effect, it is neither
easy to provide a collection of numbers ðf ðxÞ; xAR3Þ satisfying the relations
I and II, nor easy to check that a given collection of numbers satisfies these relations.

Let us illustrate the above said for the unimodular systems AðNÞ and AN :
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Example 13. (Base polytopes). We show here that the class B of base polytopes (see
Example 3) coincides with the class of AðNÞ-polytopes (a similar assertion is also
true for polyhedra; a proof, however, would involve support functions with infinite
values), where AðNÞ is the unimodular system from Example 6.

Recall that the set AðNÞCðRNÞ� consists of differences ei � ej; i; jAN: Consider

now how the arrangement fan S :¼ SðAðNÞÞ in the space RN of functions on N

looks like. Given the root r ¼ ei � ej; the corresponding mirror r> consists of

functions pARN satisfying the relation pðiÞ ¼ pðjÞ: This mirror divides the space of
functions in two halfspaces fp : pðiÞXpðjÞg and fp : pðiÞppðjÞg: We see that cones of
the fan S correspond to (weak) orders on N: If % is an order, then the corresponding
cone sð%Þ consists of monotone functions p : ðN;%Þ-ðR;pÞ: For example, full-
dimensional cones of S correspond to linear orderings; the line of constant functions
R1N corresponds to the total indifference relation on N:

The set AðNÞ has full dimension in the hyperplane ½xðNÞ ¼ 0� orthogonal to the

constant function 1NARN : Therefore we should consider the fan S in the factor

space RN=R1N : The crossings correspond to dichotomous orders on N; which splits

N into two classes S and N\S (S is different from | and N). Therefore, crossings

have the form 1S; Sa|;N:
Let now f be a convex function compatible with the fan S: Define the set-function

b : 2N-R; bðSÞ ¼ f ð1SÞ for SCN: We assert that b is submodular. Indeed, let S and
T be subsets of N: Then, by convexity of f ;

bðSÞ þ bðTÞ ¼ f ð1SÞ þ f ð1TÞX2f ðð1S þ 1T Þ=2Þ:

On the other hand, since S-TCS,T ; the points 1S-T and 1S,T belong to a cone
of S; and therefore

bðS-TÞ þ bðS,TÞ ¼ f ð1S-TÞ þ f ð1S,TÞ ¼ 2f ðð1S-T þ 1S,TÞ=2Þ:

Since 1S þ 1T ¼ 1S-T þ 1S,T ; we have

bðSÞ þ bðTÞXbðS-TÞ þ bðS,TÞ;

that is b is submodular function.
Conversely, any set-function b; considered as a function on the set of vectors

f1S; SCNg; has the unique extension f ¼ b̃ on whole RN compatible with the fan S:
This extension coincides with the Choquet integral (see [1]) of the non-additive

measure b; b̃ðpÞ ¼
R

pdb: If b is submodular function then b̃ is convex (see [13]).

The corresponding polytope @b̃ is given by the following system of inequalities

1SðxÞ ¼ xðSÞpbðSÞ; SCN; xðNÞ ¼ bðNÞ;

and is a base polytope. Thus, we prove
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Proposition 10. The class PtðAðNÞÞ of AðNÞ-polytopes coincides with the class of

base polytopes.

Of course, the class of AðNÞ-polyhedra coincides with the class of base polyhedra,
and the class of integer AðNÞ-polyhedra coincides with the class of integer base
polyhedra.

Example 14. (Generalized polymatroids). In the same spirit, we can check that the

class of generalized polymatroids in ðRNÞ� coincides with the class of AN-polyhedra.
The arrangement AðANÞ consists of hyperplanes pðiÞ ¼ 0; iAN; and pðiÞ ¼ pðjÞ;
i; jAN: The collection of vectors f71S; SCNg is the set of crossings. Cones of
SðAnÞ are in a one-to-one correspondence with pairs of orders ð%W ;%W 0 Þ on
partitions ðW ;W 0Þ of N: These partitions derive from the partitions of coordinates
in non-negative and negative parts; W denotes the non-negative coordinates of
vectors of a cone, whereas W 0 denotes the negative ones.

Now let f be a convex function on AN compatible with the fan ðSðANÞÞ: Consider

the following two functions a and b on 2N : aðSÞ :¼ �f ð�1SÞ and bðSÞ :¼ f ð1SÞ for
SCN: There are three kinds of relations between crossings: 1S þ 1T ¼ 1S,T þ 1S-T ;
�1S � 1T ¼ �1S,T � 1S-T ; and

1S þ ð�1TÞ ¼ 1S�T þ ð�1T�SÞ: ð4Þ

The first two yield submodularity of b and supermodularity of a; respectively, while
the third yields the following inequalities

bðSÞ � aðTÞ ¼ f ð1SÞ þ f ð�1TÞ

X f ð1S�TÞ þ f ð�1T�SÞ ¼ bðS � TÞ � aðT � SÞ: ð5Þ

Thus, the pair ðb; aÞ is a strong pair in the sense of [9]. The corresponding
polyhedron @f is given by the inequalities

aðSÞpxðSÞpbðSÞ;

where SCN and, by definition, @f is a generalized polymatroid.
Conversely, we can extend any strong pair ðb; aÞ to a convex function

on RN compatible with the fan SðANÞ: Thus, the class of (bounded) general-
ized polymatroids coincides with the class of AN -polytopes. Similarly, the class
of all generalized polymatroids coincides with the class of AN-polyhedra, and
the class of integer generalized polymatroids coincides with the class of integer
AN-polytopes.
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