12 research outputs found

    Comparison of different trapping methods to collect malaria vectors indoors and outdoors in western Kenya

    Get PDF
    Background: Vector surveillance is among the World Health Organization global vector control response (2017–2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors. Methods: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R. Results: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC. Conclusions: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results

    Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets

    Get PDF
    Background It has been speculated that widespread and sustained use of insecticide treated bed nets (ITNs) for over 10 years in Asembo, western Kenya, may have selected for changes in the location (indoor versus outdoor) and time (from late night to earlier in the evening) of biting of the predominant species of human malaria vectors (Anopheles funestus, Anopheles gambiae sensu stricto, and Anopheles arabiensis). Methods Mosquitoes were collected by human landing catches over a six week period in June and July, 2011, indoors and outdoors from 17 h to 07 h, in 75 villages in Asembo, western Kenya. Collections were separated by hour of the night, and mosquitoes were identified to species and tested for sporozoite infection with Plasmodium falciparum. A subset was dissected to determine parity. Human behavior (time going to bed and rising, time spent indoors and outdoors) was quantified by cross-sectional survey. Data from past studies of a similar design and in nearby settings, but conducted before the ITN scale up commenced in the early 2000s, were compared with those from the present study. Results Of 1,960 Anopheles mosquitoes collected in 2011, 1,267 (64.6%) were morphologically identified as An. funestus, 663 (33.8%) as An. gambiae sensu lato (An. gambiae s.s. and An. arabiensis combined), and 30 (1.5%) as other anophelines. Of the 663 An. gambiae s.l. collected, 385 were successfully tested by PCR among which 235 (61.0%) were identified as An. gambiae s.s. while 150 (39.0%) were identified as An. arabiensis. Compared with data collected before the scale-up of ITNs, daily entomological inoculation rates (EIRs) were consistently lower for An. gambiae s.l. (indoor EIR = 0.432 in 1985–1988, 0.458 in 1989–1990, 0.023 in 2011), and An. arabiensis specifically (indoor EIR = 0.532 in 1989–1990, 0.039 in 2009, 0.006 in 2011) but not An. funestus (indoor EIR = 0.029 in 1985–1988, 0.147 in 1989–1990, 0.010 in 2009 and 0.103 in 2011). Sporozoite rates were lowest in 2009 but rose again in 2011. Compared with data collected before the scale-up of ITNs, An. arabiensis and An. funestus were more likely to bite outdoors and/or early in the evening (p 90% of exposure of non-ITN users to mosquito bites occurring while people were indoors in all years. The proportion of bites occurring among non-ITN users while they were asleep was ≥90% for all species except for An. arabiensis. For this species, 97% of bites occurred while people were asleep in 1989–1990 while in 2009 and 2011, 80% and 84% of bites occurred while people were asleep for those not using ITNs. Assuming ITNs prevent a theoretical maximum of 93.7% of bites, it was estimated that 64-77% of bites would have occurred among persons using nets while they were asleep in 1989–1990, while 20-52% of bites would have occurred among persons using nets while they were asleep in 2009 and 2011. Conclusions This study found no evidence to support the contention that populations of Anopheles vectors of malaria in Asembo, western Kenya, are exhibiting departures from the well-known pattern of late night, indoor biting characteristic of these typically highly anthropophilic species. While outdoor, early evening transmission likely does occur in western Kenya, the majority of transmission still occurs indoors, late at night. Therefore, malaria control interventions such as ITNs that aim to reduce indoor biting by mosquitoes should continue to be prioritized

    A comparison of the attractiveness of flowering plant blossoms versus attractive targeted sugar baits (ATSBs) in western Kenya

    Get PDF
    Attractive Targeted Sugar Baits (ATSB) have been demonstrated to result in significant reductions in malaria vector numbers in areas of scarce vegetation cover such as in Mali and Israel, but it is not clear whether such an effect can be replicated in environments where mosquitoes have a wide range of options for sugar resources. The current study evaluated the attractiveness of the predominant flowering plants of Asembo Siaya County, western Kenya in comparison to an ATSB developed by Westham Co. Sixteen of the most common flowering plants in the study area were selected and evaluated for relative attractiveness to malaria vectors in semi-field structures. Six of the most attractive flowers were compared to determine the most attractive to local Anopheles mosquitoes. The most attractive plant was then compared to different versions of ATSB. In total, 56,600 Anopheles mosquitoes were released in the semi-field structures. From these, 5150 mosquitoes (2621 males and 2529 females) of An. arabiensis, An. funestus and An. gambiae were recaptured on the attractancy traps. Mangifera indica was the most attractive sugar source for all three species while Hyptis suaveolens and Tephrosia vogelii were the least attractive plants to the mosquitoes. Overall, ATSB version 1.2 was significantly more attractive compared to both ATSB version 1.1 and Mangifera indica. Mosquitoes were differentially attracted to various natural plants in western Kenya and ATSB. The observation that ATSB v1.2 was more attractive to local Anopheles mosquitoes than the most attractive natural sugar source indicates that this product may be able to compete with natural sugar sources in western Kenya and suggests this product may have the potential to impact mosquito populations in the field

    Decision makers' perspectives on implementation of governance attributes in the Kenyan Department of Health: a qualitative review in Uasin Gishu County

    No full text
    Background: Health care systems in low-income and middle-income countries, including Kenya, often perform poorly. Governance is increasingly recognised as an important factor in health system performance. However, conceptually and practically, governance remains poorly understood and difficult to measure. Attributes of good governance practices include transparency, equity, accountability, community participation and consensus orientation, setting shared directions, regulation and oversight, and the use of intelligence and information. The purpose of this paper is to examine the extent to which good governance attributes have been implemented by policy makers and managers of primary healthcare facilities in Uasin Gishu County, Kenya. Methods: Between April and July, 2016, we administered a survey to 108 decision makers at the constitutional level of governance in the department of health, Uasin Gishu County. We reviewed documents and collected data on practices of good governance using a 42-question self-administered structured questionnaire with open questions, and an adapted five -point Likert-type scale. We calculated proportions of level of agreement to establish the decision makers' perceptions on the extent of implementation of good governance practices. Cronbach's α for the items was between 0·7172 and 0·8421. We used factor analysis to identify latent factors. Qualitative information was coded and categorised into emerging themes. Findings: Data were collected between April and July, 2016. 93 people responded, of whom 42 (45%) were women. 58 respondents (64%) were older than 41 years; 64 (74%) had a degree qualification and 69% had been in their current positions for less than 5 years. About half of respondents agreed on good governance practices in strategic vision (51 [55%]) and regulation and oversight (50 [54%]). Respondents thought there was some effort, but that it was not good enough in implementing good practices in intelligence and information (51 [55%]), transparency (36 [39%]), participation and consensus orientation (44 [47%]), and respondents reported their belief that there were poor practices in accountability (64 [69%]) and equity (60 [65%]). The overall governance score was not good enough at 48% with only 9 respondents (10%) agreeing there were good governance practices. Though governance is mentioned in the strategic and development plans, there are no clear mechanisms of implementation and evaluation of governance attributes. Corruption, nepotism, lack of transparency, political interference and inadequate use of information affected governance performance. Interpretation: Our findings suggest that it is feasible to assess implementation of governance attributes in primary health care and we provide insight on strong and weak governance attributes. Overall, decision makers of Uasin Gishu County gave a poor score for governance of public health facilities. Structures should be put in place to improve accountability, equity, and community participation. Funding: Consortium for Advanced Research Training in Africa (CARTA); Future Health Systems

    Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures.

    No full text
    BackgroundUnderstanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya.MethodsAnopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections.ResultsAnopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p &lt; 0.0001, An. funestus; F1, 655 = 36.555, p &lt; 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73).ConclusionThe study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya

    Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures.

    No full text
    BackgroundUnderstanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya.MethodsAnopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections.ResultsAnopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p ConclusionThe study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya

    Dataset for the article: A comparison of the attractiveness of flowering plant blossoms versus attractive targeted sugar baits (ATSBs) in western Kenya

    No full text
    Attractive Targeted Sugar Baits (ATSB) have been demonstrated to result in significant reductions in malaria vector numbers in areas of scarce vegetation cover such as in Mali and Israel, but it is not clear whether such an effect can be replicated in environments where mosquitoes have a wide range of options for sugar resources. The current study evaluated the attractiveness of the predominant flowering plants of Asembo Siaya County, western Kenya in comparison to an ATSB developed by Westham Co. Sixteen of the most common flowering plants in the study area were selected and evaluated for relative attractiveness to malaria vectors in semi-field structures. Six of the most attractive flowers were compared to determine the most attractive to local Anopheles mosquitoes. The most attractive plant was then compared to different versions of ATSB. In total, 56,600 Anopheles mosquitoes were released in the semi-field structures. From these, 5150 mosquitoes (2621 males and 2529 females) of An. arabiensis, An. funestus and An. gambiae were recaptured on the attractancy traps. Mangifera indica was the most attractive sugar source for all three species while Hyptis suaveolens and Tephrosia vogelii were the least attractive plants to the mosquitoes. Overall, ATSB version 1.2 was significantly more attractive compared to both ATSB version 1.1 and Mangifera indica. Mosquitoes were differentially attracted to various natural plants in western Kenya and ATSB. The observation that ATSB v1.2 was more attractive to local Anopheles mosquitoes than the most attractive natural sugar source indicates that this product may be able to compete with natural sugar sources in western Kenya and suggests this product may have the potential to impact mosquito populations in the field

    A comparison of the attractiveness of flowering plant blossoms versus attractive targeted sugar baits (ATSBs) in western Kenya

    No full text
    Attractive Targeted Sugar Baits (ATSB) have been demonstrated to result in significant reductions in malaria vector numbers in areas of scarce vegetation cover such as in Mali and Israel, but it is not clear whether such an effect can be replicated in environments where mosquitoes have a wide range of options for sugar resources. The current study evaluated the attractiveness of the predominant flowering plants of Asembo Siaya County, western Kenya in comparison to an ATSB developed by Westham Co. Sixteen of the most common flowering plants in the study area were selected and evaluated for relative attractiveness to malaria vectors in semi-field structures. Six of the most attractive flowers were compared to determine the most attractive to local Anopheles mosquitoes. The most attractive plant was then compared to different versions of ATSB. In total, 56,600 Anopheles mosquitoes were released in the semi-field structures. From these, 5150 mosquitoes (2621 males and 2529 females) of An. arabiensis, An. funestus and An. gambiae were recaptured on the attractancy traps. Mangifera indica was the most attractive sugar source for all three species while Hyptis suaveolens and Tephrosia vogelii were the least attractive plants to the mosquitoes. Overall, ATSB version 1.2 was significantly more attractive compared to both ATSB version 1.1 and Mangifera indica. Mosquitoes were differentially attracted to various natural plants in western Kenya and ATSB. The observation that ATSB v1.2 was more attractive to local Anopheles mosquitoes than the most attractive natural sugar source indicates that this product may be able to compete with natural sugar sources in western Kenya and suggests this product may have the potential to impact mosquito populations in the field

    Late morning biting behaviour of Anopheles funestus is a risk factor for transmission in schools in Siaya, western Kenya

    No full text
    Background: Children in Kenya spend a substantial amount of time at school, including at dawn and dusk when mosquitoes are active. With changing vector behaviour towards early morning biting, it is important to determine whether there is an additional risk of transmission in schools. This study sought to understand whether late morning biting by Anopheles funestus, previously documented in households in western Kenya, was replicated in schools. Methods: From the 4th to the 6th of August 2023, human landing collections were conducted hourly in four schools in Alego Usonga sub-County, Siaya County. The collections were conducted in and outside five classrooms in each school and ran for 17 h, starting at 18:00 until 11:00 h the next morning. Results: Anopheles funestus was the predominant species collected, forming 93.2% (N = 727) of the entire collection, with peak landing between 06:00 and 07:00 h and continuing until 11:00 h. More than half of the collected An. funestus were either fed or gravid, potentially indicative of multiple bloodmeals within each gonotrophic cycle, and had a sporozoite rate of 2.05%. Conclusion: School children spend up to 10 h of their daytime in schools, reporting between 06:00 and 07:00 h and staying in school until as late as 17:00 h, meaning that they receive potentially infectious mosquito bites during the morning hours in these settings. There is a need to consider vector control approaches targeting schools and other peridomestic spaces in the morning hours when An. funestus is active
    corecore