395 research outputs found

    Model mass spectrometric study of competitive interactions of antimicrobial bisquaternary ammonium drugs and aspirin with membrane phospholipids

    Get PDF
    The aim of the study is to reveal molecular mechanisms of possible activity modulation of antimicrobial bis-quaternary ammonium compounds (BQAC) and aspirin (ASP) through noncovalent competitive complexation under their combined introduction into the model systems with membrane phospholipids. Methods. Binary and triple systems containing either decamethoxinum or ethonium, or thionium and aspirin, as well as dipalmitoyl-phosphatidylcholine (DPPC) have been investigated by electrospray ionization mass spectrometry. Results. Basing on the analysis of associates recorded in the mass spectra, the types of nonocovalent complexes formed in the systems studied were determined and the supposed role of the complexation in the BQAC and ASP activity modulation was discussed. The formation of associates of BQAC dications with ASP anion is considered as one of the possible ways of deactivation of ionic forms of the medications. The formation of stable complexes of BQAC with DPPC and ASP with DPPC in binary systems as well as the complexes distribution in triple-components systems BQAC:ASP:DPPC point to the existence of competition between drugs of these two types for the binding to DPPC. Conclusions. The results obtained point to the competitive complexation in the model molecular systems containing the BQAC, aspirin and membrane phospholipids. The observed phenomenon testifies to the possibility of modulating the activity of bisquaternary antimicrobial agents and aspirin under their combined usage, due to the competition between the drugs for binding to the target membrane phospholipid molecules and also due to the formation of stable noncovalent complexes between BQAC and ASP

    Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics

    Full text link
    We present analytical and numerical studies of phase-coherent dynamics of intrinsically localized excitations (breathers) in a system of two weakly coupled nonlinear oscillator chains. We show that there are two qualitatively different dynamical regimes of the coupled breathers, either immovable or slowly-moving: the periodic transverse translation (wandering) of low-amplitude breather between the chains, and the one-chain-localization of high-amplitude breather. These two modes of coupled nonlinear excitations, which involve large number of anharmonic oscillators, can be mapped onto two solutions of a single pendulum equation, detached by a separatrix mode. We also study two-chain breathers, which can be considered as bound states of discrete breathers with different symmetry and center locations in the coupled chains, and bifurcation of the anti-phase two-chain breather into the one-chain one. Delocalizing transition of 1D breather in 2D system of a large number of parallel coupled nonlinear chains is described, in which the breather, initially excited in a given chain, abruptly spreads its vibration energy in the whole 2D system upon decreasing breather frequency or amplitude below the threshold one. The threshold breather frequency is above the cut off phonon frequency in 2D system, and the threshold breather amplitude scales as square root of the inter-chain coupling constant. Delocalizing transition of discrete vibrational breather in 2D and 3D systems of coupled nonlinear chains has an analogy with delocalizing transition for Bose-Einstein condensates in 2D and 3D optical lattices.Comment: 33 pages, 16 figure

    Motion of vortices in ferromagnetic spin-1 BEC

    Get PDF
    The paper investigates dynamics of nonsingular vortices in a ferromagnetic spin-1 BEC, where spin and mass superfluidity coexist in the presence of uniaxial anisotropy (linear and quadratic Zeeman effect). The analysis is based on hydrodynamics following from the Gross-Pitaevskii theory. Cores of nonsingular vortices are skyrmions with charge, which is tuned by uniaxial anisotropy and can have any fractal value between 0 and 1. There are circulations of mass and spin currents around these vortices. The results are compared with the equation of vortex motion derived earlier in the Landau-Lifshitz-Gilbert theory for magnetic vortices in easy-plane ferromagnetic insulators. In the both cases the transverse gyrotropic force (analog of the Magnus force in superfluid and classical hydrodynamics) is proportional to the charge of skyrmions in vortex cores.Comment: 19 pages, 2 figures, to be published in the special issue of Fizika Nizkikh Temperatur dedicated to A.M.Kosevich. arXiv admin note: substantial text overlap with arXiv:1801.0109

    On the theory of magnetization in multiferroics: competition between ferro- and antiferromagnetic domains

    Full text link
    Many technological applications of multiferroics are based on their ability to reconstruct the domain structure (DS) under the action of small external fields. In the present paper we analyze the different scenarios of the DS behavior in a multiferroic that shows simultaneously ferro- and antiferromagnetic ordering on the different systems of magnetic ions. We consider the way to control a composition of the DS and macroscopic properties of the sample by an appropriate field treatment. We found out that sensitivity of the DS to the external magnetic field and the magnetic susceptibility in a low-field region are determined mainly by the destressing effects (that have magnetoelastic origin). In a particular case of Sr2_{2}Cu3_{3}O4_{4}Cl2_{2} crystal we anticipate the peculiarities of the elastic and magnetoelastic properties at T100T\approx 100 K.Comment: 16 pages, 10 figure

    Multiphonon anharmonic decay of a quantum mode

    Full text link
    A nonperturbative theory of multiphonon anharmonic transitions between energy levels of a local mode is presented. It is shown that the rate of transitions rearranges near the critical level number ncrn_{cr}: at smaller nn the process slows down, while at larger nn it accelerates in time, causing a jump-like loss of energy followed by the generation of phonon bursts. Depending on parameters, phonons are emitted in pairs, triplets etc.Comment: submitted to Europhys.Let

    Theory of oscillations in the STM conductance resulting from subsurface defects (Review Article)

    Get PDF
    In this review we present recent theoretical results concerning investigations of single subsurface defects by means of a scanning tunneling microscope (STM). These investigations are based on the effect of quantum interference between the electron partial waves that are directly transmitted through the contact and the partial waves scattered by the defect. In particular, we have shown the possibility imaging the defect position below a metal surface by means of STM. Different types of subsurface defects have been discussed: point-like magnetic and non-magnetic defects, magnetic clusters in a nonmagnetic host metal, and non-magnetic defects in a s-wave superconductor. The effect of Fermi surface anisotropy has been analyzed. Also, results of investigations of the effect of a strong magnetic field to the STM conductance of a tunnel point contact in the presence of a single defect has been presented.Comment: 31 pages, 10 figuers Submitted to Low. Temp. Phy

    Signature of Fermi surface anisotropy in point contact conductance in the presence of defects

    Get PDF
    In a previous paper (Avotina et al.,Phys. Rev. B Vol.71, 115430 (2005)) we have shown that in principle it is possible to image the defect positions below a metal surface by means of a scanning tunnelling microscope. The principle relies on the interference of electron waves scattered on the defects, which give rise to small but measurable conductance fluctuations. Whereas in that work the band structure was assumed to be free-electron like, here we investigate the effects of Fermi surface anisotropy. We demonstrate that the amplitude and period of the conductance oscillations are determined by the local geometry of the Fermi surface. The signal results from those points for which the electron velocity is directed along the vector connecting the point contact to the defect. For a general Fermi surface geometry the position of the maximum amplitude of the conductance oscillations is not found for the tip directly above the defect. We have determined optimal conditions for determination of defect positions in metals with closed and open Fermi surfaces.Comment: 23 pages, 8 figure

    Conversion of hole states by acoustic solitons

    Full text link
    The hole states in the valence band of a large class of semiconductors are degenerate in the projections of angular momentum. Here we show that the switching of a hole between the states can efficiently be realized by acoustic solitons. The microscopic mechanism of such a state conversion is related to the valence band splitting by local elastic strain. The conversion is studied here for heavy holes localized at shallow and deep acceptors in silicon quantum wells.Comment: 4 pages, 2 figure

    Dynamics of viscous amphiphilic films supported by elastic solid substrates

    Full text link
    The dynamics of amphiphilic films deposited on a solid surface is analyzed for the case when shear oscillations of the solid surface are excited. The two cases of surface- and bulk shear waves are studied with film exposed to gas or to a liquid. By solving the corresponding dispersion equation and the wave equation while maintaining the energy balance we are able to connect the surface density and the shear viscocity of a fluid amphiphilic overlayer with experimentally accessible damping coefficients, phase velocity, dissipation factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma

    7th International conference NBP-2021 “Nanobiophysics: fundamental and applied aspects”

    Get PDF
    7th International conference “NANOBIOPHYSICS: Fundamental and Applied Aspects” (NBP-2021) took place on October 4-8, 2021 at B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine (Kharkiv, Ukraine). Previous six conferences, starting from 2009, were organized due to joint efforts of B. Verkin Institute for Low Temperature Physics and Engineering of the NAS of Ukraine and Institute of Physics of the NAS of Ukraine on biennial basis in Kharkiv and Kyiv alternatively. Among 80 registered participants from 16 countries about 40 scientists have presented their lectures and posters offline and other participants were joining the sessions online. 16 keynote lectures and 18 oral presentations were made and 51 posters were discussed offline and online. The goal of the conference was achieved: urgent problems, advances and perspectives of the topical scientific direction of nanobiophysics which embraces achievements of modern molecular biophysics and nanotechnology were discussed. The subjects of physical aspects of biomolecular nanosystems, properties of biomolecules on nanoparticles and nanostructured surfaces, nanobiohybrids formation by 1-D or 2-D nanomaterials with bioobjects, theoretical calculations and computer modeling of nanobiosystems, and applied aspects of nanobiophysics were highlighted at the related sessions. Several additional accompanying events were organized in the framework of the conference, including a Round Table “How biophysics and nanosciences meet modern challenges: the case of COVID-19”, a special session of the Ukrainian Biophysical Society, and SPIE (The International Society of Optics and Photonics) and OSA (The Optical Society) Workshop “Career development opportunities for young scientist and students”. Book of abstract based on NBP-2021 materials was published
    corecore