7 research outputs found
Phenological shifts of abiotic events, producers and consumers across a continent
Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe
Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology
We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe
COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR
The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles.
The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; the mini-rods were irradiated to an average burnup of ∼ 85%235U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%
Differences in spatial versus temporal reaction norms for spring and autumn phenological events
For species to stay temporally tuned to their environment, they use cues such as the accumulation of degree-days. The relationships between the timing of a phenological event in a population and its environmental cue can be described by a population-level reaction norm. Variation in reaction norms along environmental gradients may either intensify the environmental effects on timing (cogradient variation) or attenuate the effects (countergradient variation). To resolve spatial and seasonal variation in species' response, we use a unique dataset of 91 taxa and 178 phenological events observed across a network of 472 monitoring sites, spread across the nations of the former Soviet Union. We show that compared to local rates of advancement of phenological events with the advancement of temperature-related cues (i.e., variation within site over years), spatial variation in reaction norms tend to accentuate responses in spring (cogradient variation) and attenuate them in autumn (countergradient variation). As a result, among-population variation in the timing of events is greater in spring and less in autumn than if all populations followed the same reaction norm regardless of location. Despite such signs of local adaptation, overall phenotypic plasticity was not sufficient for phenological events to keep exact pace with their cues-the earlier the year, the more did the timing of the phenological event lag behind the timing of the cue. Overall, these patterns suggest that differences in the spatial versus temporal reaction norms will affect species' response to climate change in opposite ways in spring and autumn
"Flora of Russia" on iNaturalist: a dataset
The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities
"Flora of Russia" on iNaturalist: a dataset
The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities
"Flora of Russia" on iNaturalist: a dataset
The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities