19 research outputs found

    In vivo efficacy of the boron-pleuromutilin AN11251 against Wolbachia of the rodent filarial nematode Litomosoides sigmodontis

    Get PDF
    The elimination of filarial diseases such as onchocerciasis and lymphatic filariasis is hampered by the lack of a macrofilaricidal – adult worm killing – drug. In the present study, we tested the in vivo efficacy of AN11251, a boron-pleuromutilin that targets endosymbiotic Wolbachia bacteria from filarial nematodes and compared its efficacy to doxycycline and rifampicin. Doxycycline and rifampicin that were previously shown to deplete Wolbachia endosymbionts leading to a permanent sterilization of the female adult filariae and adult worm death in human clinical studies. Twice-daily oral treatment of Litomosoides sigmodontis-infected mice with 200 mg/kg AN11251 for 10 days achieved a Wolbachia depletion > 99.9% in the adult worms, exceeding the Wolbachia reduction by 10-day treatments with bioequivalent human doses of doxycycline and a similar reduction as high-dose rifampicin (35 mg/kg). Wolbachia reductions of > 99% were also accomplished by 14 days of oral AN11251 at a lower twice-daily dose (50 mg/kg) or once-per-day 200 mg/kg AN11251 treatments. The combinations tested of AN11251 with doxycycline had no clear beneficial impact on Wolbachia depletion, achieving a > 97% Wolbachia reduction with 7 days of treatment. These results indicate that AN11251 is superior to doxycycline and comparable to high-dose rifampicin in the L. sigmodontis mouse model, allowing treatment regimens as short as 10-14 days. Therefore, AN11251 is represents a promising pre-clinical candidate that was identified in the L. sigmodontis model, and could be further evaluated and developed as potential clinical candidate for human lymphatic filariasis and onchocerciasis.  AUTHOR SUMMARY Onchocerciasis and lymphatic filariasis are human filarial tropical diseases, which can cause blindness and severe dermatitis (onchocerciasis) or lymphedema and hydrocele (lymphatic filariasis). Current strategies to eliminate these diseases include the mass drug administration (MDA) of drugs that target the progeny of the filariae, the microfilariae, and temporarily inhibit filarial embryogenesis and, therefore, the transmission of the disease. However, MDA has several limitations that delay the goal of elimination including the lack of a drug with a short term regimen and a potent macrofilaricidal effect. As an alternative approach, the antibiotic doxycycline has been proven to be effective in depleting Wolbachia endosymbionts from adult filariae, which then leads to permanent sterilization and death of the adult worms. Due to contraindications for doxycycline and prolonged treatment regimen of at least 4 weeks, there is an urgent need for new anti-filarial drugs with an improved safety profile and shorter regimens. The current study demonstrates that the boron-pleuromutilin derivative AN11251 provides an excellent in vivo anti-Wolbachia depletion in the Litomosoides sigmodontis filarial mouse model that is superior to doxycycline and comparable to rifampicin, allowing for regimens as short as 10-14 days. Combination with doxycycline for 7 days had no significant beneficial effect on efficacy, achieving Wolbachia reductions of more than 97%. Therefore, AN11251 shows potent anti-Wolbachia activity in the L. sigmodontis mouse model and may also present an alternative pre-clinical candidate for filariasis treatment

    The efficacy of the benzimidazoles oxfendazole and flubendazole against Litomosoides sigmodontis is dependent on the adaptive and innate immune system

    Get PDF
    Filarial nematodes can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Oxfendazole (OXF) is one promising macrofilaricidal candidate with improved oral availability compared to flubendazole (FBZ), and OXF is currently under preparation for phase 2 clinical trials in filariasis patients. This study aimed to investigate the immune system’s role during treatment with OXF and FBZ and explore the potential to boost the treatment efficacy via stimulation of the immune system. Wild type (WT) BALB/c, eosinophil-deficient ΔdblGata1, IL-4r/IL-5−/−, antibody-deficient μMT and B-, T-, NK-cell and ILC-deficient Rag2/IL-2rγ−/− mice were infected with the rodent filaria Litomosoides sigmodontis and treated with an optimal and suboptimal regimen of OXF and FBZ for up to 5 days. In the second part, WT mice were treated for 2–3 days with a combination of OXF and IL-4, IL-5, or IL-33. Treatment of WT mice reduced the adult worm burden by up to 94% (OXF) and 100% (FBZ) compared to vehicle controls. In contrast, treatment efficacy was lower in all immunodeficient strains with a reduction of up to 90% (OXF) and 75% (FBZ) for ΔdblGata1, 50 and 92% for IL-4r/IL-5−/−, 64 and 78% for μMT or 0% for Rag2/IL-2rγ−/− mice. The effect of OXF on microfilariae and embryogenesis displayed a similar pattern, while FBZ’s ability to prevent microfilaremia was independent of the host’s immune status. Furthermore, flow cytometric analysis revealed strain-and treatment-specific immunological changes. The efficacy of a shortened 3-day treatment of OXF (−33% adult worms vs. vehicle) could be boosted to a 91% worm burden reduction via combination with IL-5, but not IL-4 or IL-33. Our results suggest that various components of the immune system support the filaricidal effect of benzimidazoles in vivo and present an opportunity to boost treatment efficacy

    Combinations of the azaquinazoline anti-Wolbachia agent, AWZ1066S, with benzimidazole anthelmintics synergise to mediate sub-seven-day sterilising and curative efficacies in experimental models of filariasis

    Get PDF
    Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi—CB.17 SCID mice, B. malayi—Mongolian gerbils, B. pahangi—Mongolian gerbils, and Litomosoides sigmodontis—Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance

    Short-course quinazoline drug treatments are effective in the Litomosoides sigmodontis and Brugia pahangi jird models

    Get PDF
    The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days

    Combinations of registered drugs reduce treatment times required to deplete Wolbachia in the Litomosoides sigmodontis mouse model.

    Get PDF
    Filarial parasites can be targeted by antibiotic treatment due to their unique endosymbiotic relationship with Wolbachia bacteria. This finding has led to successful treatment strategies in both, human onchocerciasis and lymphatic filariasis. A 4-6 week treatment course using doxycycline results in long-term sterility and safe macrofilaricidal activity in humans. However, current treatment times and doxycycline contraindications in children and pregnant women preclude widespread administration of doxycycline in public health control programs; therefore, the search for shorter anti-wolbachial regimens is a focus of ongoing research. We have established an in vivo model for compound screening, using mice infected with Litomosoides sigmodontis. We could show that gold standard doxycycline treatment did not only deplete Wolbachia, it also resulted in a larval arrest. In this model, combinations of registered antibiotics were tested for their anti-wolbachial activity. Administration of rifamycins in combination with doxycycline for 7 days successfully depleted Wolbachia by > 2 log (>99% reduction) and thus resulted in a significant reduction of the treatment duration. Using a triple combination of a tetracycline (doxycycline or minocycline), a rifamycin and a fluoroquinolone (moxifloxacin) led to an even greater shortening of the treatment time. Testing all double combinations that could be derived from the triple combinations revealed that the combination of rifapentine (15mg/kg) and moxifloxacin (2 x 200mg/kg) showed the strongest reduction of treatment time in intraperitoneal and also oral administration routes. The rifapentine plus moxifloxacin combination was equivalent to the triple combination with additional doxycycline (>99% Wolbachia reduction). These investigations suggest that it is possible to shorten anti-wolbachial treatment times with combination treatments in order to achieve the target product profile (TPP) requirements for macrofilaricidal drugs of no more than 7-10 days of treatment

    Macrofilaricidal efficacy of single and repeated oral and subcutaneous doses of flubendazole in Litomosoides sigmodontis infected jirds.

    No full text
    Flubendazole (FBZ) is highly efficacious against filarial nematodes after parenteral administration and presents a promising macrofilaricidal drug candidate for the elimination of onchocerciasis and other filariae. In the present study the efficacy of a newly developed bioavailable amorphous solid dispersion (ASD) oral formulation of FBZ was investigated in the Litomosoides sigmodontis jird model. FBZ was administered to chronically infected, microfilariae-positive jirds by single (40mg/kg), repeated (2, 6 or 15mg/kg for 5 or 10 days) oral (OR) doses or single subcutaneous (SC) injections (2 or 10mg/kg). Jirds treated with 5 SC injections at 10mg/kg served as positive controls, with untreated animals used as negative controls. After OR doses, FBZ is rapidly absorbed and cleared and the exposures increased dose proportionally. SC administered FBZ was slowly released from the injection site and plasma levels remained constant up to necropsy eight weeks after treatment end. Increasing single SC doses caused less than dose-proportional exposures. At necropsy, all animals receiving 1x or 5x 10mg/kg SC FBZ had cleared all adult worms and the 1x 2mg/kg SC treatment had reduced the adult worm burden by 98%. 10x 15mg/kg OR FBZ reduced the adult worm burden by 95%, whereas 1x 40mg/kg and 5x 15mg/kg OR reduced the worm burden by 85 and 84%, respectively. Microfilaremia was completely cleared at necropsy in all animals of the SC treatment regimens, while all oral FBZ treatment regimens reduced the microfilaremia by >90% in a dose and duration dependent manner. In accordance, embryograms from female worms revealed a FBZ dose and duration dependent inhibition of embryogenesis. Histological analysis of the remaining female adult worms showed that FBZ had damaged the body wall, intestine and most prominently the uterus and uterine content. Results of this study demonstrate that single and repeated SC injections and repeated oral administrations of FBZ have an excellent macrofilaricidal effect

    Oxfendazole mediates macrofilaricidal efficacy against the filarial nematode Litomosoides sigmodontis in vivo and inhibits Onchocerca spec. motility in vitro.

    No full text
    A major impediment to eliminate lymphatic filariasis and onchocerciasis is the lack of effective short-course macrofilaricidal drugs or regimens that are proven to be safe for both infections. In this study we tested oxfendazole, an anthelmintic shown to be well tolerated in phase 1 clinical trials. In vitro, oxfendazole exhibited modest to marginal motility inhibition of adult worms of Onchocerca gutturosa, pre-adult worms of Onchocerca volvulus and Onchocerca lienalis microfilariae. In vivo, five days of oral treatments provided sterile cure with up to 100% macrofilaricidal efficacy in the murine Litomosoides sigmodontis model of filariasis. In addition, 10 days of oral treatments with oxfendazole inhibited filarial embryogenesis in patent L. sigmodontis-infected jirds and subsequently led to a protracted but complete clearance of microfilaremia. The macrofilaricidal effect observed in vivo was selective, as treatment with oxfendazole of microfilariae-injected naïve mice was ineffective. Based on pharmacokinetic analysis, the driver of efficacy is the maintenance of a minimal efficacious concentration of approximately 100 ng/ml (based on subcutaneous treatment at 25 mg/kg in mice). From animal models, the human efficacious dose is predicted to range from 1.5 to 4.1 mg/kg. Such a dose has already been proven to be safe in phase 1 clinical trials. Oxfendazole therefore has potential to be efficacious for treatment of human filariasis without causing adverse reactions due to drug-induced microfilariae killing

    In vivo kinetics of Wolbachia depletion by ABBV-4083 in L. sigmodontis adult worms and microfilariae.

    No full text
    Depletion of Wolbachia endosymbionts of human pathogenic filariae using 4-6 weeks of doxycycline treatment can lead to permanent sterilization and adult filarial death. We investigated the anti-Wolbachia drug candidate ABBV-4083 in the Litomosoides sigmodontis rodent model to determine Wolbachia depletion kinetics with different regimens. Wolbachia reduction occurred in mice as early as 3 days after the initiation of ABBV-4083 treatment and continued throughout a 10-day treatment period. Importantly, Wolbachia levels continued to decline after a 5-day-treatment from 91.5% to 99.9% during a 3-week washout period. In jirds, two weeks of ABBV-4083 treatment (100mg/kg once-per-day) caused a >99.9% Wolbachia depletion in female adult worms, and the kinetics of Wolbachia depletion were recapitulated in peripheral blood microfilariae. Similar to Wolbachia depletion, inhibition of embryogenesis was time-dependent in ABBV-4083-treated jirds, leading to a complete lack of late embryonic stages (stretched microfilariae) and lack of peripheral microfilariae in 5/6 ABBV-4083-treated jirds by 14 weeks after treatment. Twice daily treatment in comparison to once daily treatment with ABBV-4083 did not significantly improve Wolbachia depletion. Moreover, up to 4 nonconsecutive daily treatments within a 14-dose regimen did not significantly erode Wolbachia depletion. Within the limitations of an animal model that does not fully recapitulate human filarial disease, our studies suggest that Wolbachia depletion should be assessed clinically no earlier than 3-4 weeks after the end of treatment, and that Wolbachia depletion in microfilariae may be a viable surrogate marker for the depletion within adult worms. Furthermore, strict daily adherence to the dosing regimen with anti-Wolbachia candidates may not be required, provided that the full regimen is subsequently completed

    Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.

    No full text
    Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug

    Comparison of different antibiotics for <i>Wolbachia</i> depletion.

    No full text
    <p>Antibiotics were administered intraperitoneally at 25mg/kg/d for 10 days or 50mg/kg/d for 4 days. Worms were recovered at day 35 post infection. (<b>a</b>) FtsZ copy numbers and (<b>b</b>) FtsZ/Actin ratio are given per single female worm. The female worm length is shown in (<b>c</b>). Significances were tested with Mann-Whitney-U test. *p<0.05; **p<0.01; ***p<0.001. Exact p-values are given in <a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0006116#pntd.0006116.s001" target="_blank">S1 Table</a>.</p
    corecore