104 research outputs found

    Dose-escalated salvage radiotherapy after radical prostatectomy in high risk prostate cancer patients without hormone therapy: outcome, prognostic factors and late toxicity

    Get PDF
    Purpose: Evaluation of dose escalated salvage radiotherapy (SRT) in patients after radical prostatectomy (RP) who had never received antihormonal therapy. To investigate prognostic factors of the outcome of SRT and to analyze which patient subsets benefit most from dose escalation. Materials and methods: Between 2002 and 2008, 76 patients were treated in three different dose-groups: an earlier cohort treated with 66 Gy irrespective of pre-RT-characteristics and two later cohorts treated with 70 Gy or 75 Gy depending on pre-RT-characteristics. Biochemical-relapse-free-survival (bRFS), clinical-relapse-free-survival (cRFS) and late toxicity were evaluated. Results: Four-year bRFS and cRFS were 62.5% and 85%. Gleason score <8, positive surgical resection margin (PSRM) and low PSA (<= 0.5 ng/ml) before SRT resulted in higher bRFS. Analysis of the whole group showed no clear dose-outcome relationship. Patients with PSRM, however, had improved bRFS when escalating >66 Gy. While >70 Gy did not improve the overall results, 4-year bRFS for patients with manifest local recurrence in the high-dose group was still comparable to those without manifest local recurrences. No grade 4 and minimal grade 3 gastrointestinal and urinary toxicity were observed. Conclusions: Dose-escalated SRT achieves high biochemical control. The data strongly support the application of at least 70 Gy rather than 66 Gy. They do not prove positive effects of doses >70 Gy but do not disprove them as these doses were only applied to an unfavorable patients selection

    Radio-Continuum Emission From The Young Galactic Supernova Remnant G1.9+0.3

    Full text link
    We present an analysis of a new Australia Telescope Compact Array (ATCA) radio-continuum observation of supernova remnant (SNR) G1.9+0.3, which at an age of \sim181±\pm25 years is the youngest known in the Galaxy. We analysed all available radio-continuum observations at 6-cm from the ATCA and the Very Large Array. Using this data we estimate an expansion rate for G1.9+0.3 of 0.563%±\pm0.078% per year between 1984 and 2009. We note that in the 1980's G1.9+0.3 expanded somewhat slower (0.484% per year) than more recently (0.641% per year). We estimate that the average spectral index between 20-cm and 6-cm, across the entire SNR is α=0.72±0.26\alpha=-0.72\pm 0.26 which is typical for younger SNRs. At 6-cm, we detect an average of 6% fractionally polarised radio emission with a peak of 17%±\pm3%. The polarised emission follows the contours of the strongest of X-ray emission. Using the new equipartition formula we estimate a magnetic field strength of B273μ\approx 273\muG, which to date, is one of the highest magnetic field strength found for any SNR and consistent with G1.9+0.3 being a very young remnant. This magnetic field strength implies a minimum total energy of the synchrotron radiation of Emin_{\textrm{min}} \approx 1.8×\times1048^{48} ergs.Comment: As accepted by Serbian Astronomical Journa

    Chandra and Very Large Array Observations of the Nearby Sd Galaxy NGC 45

    Get PDF
    We present an analysis of high angular resolution observations made in the X-ray and the radio with the Chandra X-ray Observatory and the Karl Jansky Very Large Array (VLA), respectively, of the nearby spiral galaxy NGC 45. This galaxy is the third that we have considered in a study of the supernova remnant (SNR) populations of nearby spiral galaxies and the present work represents the first detailed analysis of the discrete X-ray and radio source populations of this galaxy. We analyzed data sets from the three pointed observations made of this galaxy with Chandra along with a merged data set obtained from combining these data sets: the total effective exposure time of the merged data set is 63515 s. A total of 25 discrete X-ray sources are found in the entire field of view of the ACIS-S3 chip, with 16 sources found within the visual extent of the galaxy. We estimate that as many as half of the sources detected in the entire field of view of the ACIS-S3 chip and seven of the sources detected in the optical extent of NGC 45 may be background sources. We analyzed the spectral properties of the discrete X-ray sources within the galaxy and conclude that the majority of these sources are X-ray binaries. We have searched for counterparts at different wavelengths to the discrete X-ray sources and we find two associations: one with a star cluster and the other with a background galaxy. We have found one source that is clearly variable within one observation and seven that are seen to vary from one observation to another. We also conduct a photometric analysis to determine the near-infrared fluxes of the discrete X-ray sources in Spitzer Infrared Array Camera channels. We constructed a cumulative luminosity function of the discrete X-ray sources seen toward NGC 45: taking into account simultaneously the luminosity function of background sources, the fitted slope of the cumulative luminosity function Γ = –1.3_(-1.6)^(+0.7) (all error bounds correspond to 90% confidence intervals). The VLA observations reveal seven discrete radio sources: we find no overlaps between these sources and the X-ray detected sources. Based on their measured spectral indices and their locations with respect to the visible extent of NGC 45, we classify one source as a candidate radio SNR associated with the galaxy and the others as likely background galaxies seen in projection toward NGC 45. Finally, we discuss the properties of a background cluster of galaxies (denoted as CXOU J001354.2–231254.7) seen in projection toward NGC 45 and detected by the Chandra observations. The fit parameters to the extracted Chandra spectra of this cluster are a column density N_H = 0.07(<0.14) × 10^(22) cm^(−2), a temperature kT = 4.22_(-1.42)^(+2.08) keV, an abundance Z = 0.30(<0.75) relative to solar and a redshift z = 0.28 ± 0.14. From the fit parameters we derive an electron number density n_e = 4(±1) × 10^(−3) cm^(−3), an unabsorbed X-ray luminosity L_(0.5-7.0keV) ~ 8.77(±0.96) × 10^(43) erg s^(−1) for the cluster and an X-ray emitting mass M = 2.32(±1.75) × 10^(12)M_☉

    Action anticipation based on an agent's epistemic state in toddlers and adults

    Get PDF
    Do toddlers and adults engage in spontaneous Theory of Mind (ToM)? Evidence from anticipatory looking (AL) studies suggests that they do. But a growing body of failed replication studies raised questions about the paradigm’s suitability. In this multi-lab collaboration, we test the robustness of spontaneous ToM measures. We examine whether 18- to 27-month-olds’ and adults’ anticipatory looks distinguish between two basic forms of an agent’s epistemic states: knowledge and ignorance. In toddlers [ANTICIPATED n = 520 50% FEMALE] and adults [ANTICIPATED n = 408, 50% FEMALE] from diverse ethnic backgrounds, we found [SUPPORT/NO SUPPORT] for epistemic state-based action anticipation. Future research can probe whether this conclusion extends to more complex kinds of epistemic states, such as true and false beliefs

    MODELLING MATRIX DIFFUSION - RESULTS OF A BENCHMARK STUDY

    No full text

    How mobile are Sorbed Cations in Clays and Clay Rocks?

    No full text
    corecore