23 research outputs found

    Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    Get PDF
    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1–9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S–28S rRNA genes and telomeric (TTAGGG) n sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae

    Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases

    Get PDF
    Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamiana. Magnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana. We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors

    複数の病原糸状菌に対するシロイヌナズナの侵入後抵抗性に関する研究

    Get PDF
    京都大学0048新制・課程博士博士(農学)甲第22128号農博第2374号新制||農||1073(附属図書館)学位論文||R1||N5236(農学部図書室)京都大学大学院農学研究科応用生物科学専攻(主査)教授 髙野 義孝, 教授 田中 千尋, 教授 寺内 良平学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDGA

    Genome-wide transcriptional profiling of wheat infected with Fusarium graminearum

    Get PDF
    Fusarium head blight (FHB) is a destructive disease in wheat caused by Fusarium graminearum (F. g). It infects during the flowering stage favored by warm and highly humid climates. In order to understand possible wheat defense mechanism, gene expression analysis in response to F. g was undertaken in three genotypes of wheat, Japanese landrace cultivar Nobeokabouzu (highly resistant), Chinese cv. Sumai 3 (resistant) and Australian cv. Gamenya (susceptible). For microarray analysis, 3 and 7 days after inoculation (dai) samples were used in Agilent wheat custom array 4x38k. At 3 dai, the highest number of genes was up-regulated in Nobeokabouzu followed by Sumai 3 and minimum expression in Gamenya. Whereas at 7 dai, Sumai 3 expressed more genes compared to others. Further narrowing down by excluding commonly expressed genes in three genotypes and grouping according to the gene function has identified differentially high expression of genes involved in detoxification process such as multidrug resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters in Nobeokabouzu at 3 dai. However in Sumai 3 many defense-related genes such as peroxidase, proteases and genes involved in plant cell wall defense at 7 dai were identified. These findings showed the difference of molecular defense mechanism among the cultivars in response to the pathogen. The complete data was accessed in NCBI GEO database with accession number GSE59721

    Altered Gene Expression Profiles of Wheat Genotypes against Fusarium Head Blight

    No full text
    Fusarium graminearum is responsible for Fusarium head blight (FHB), which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time points on three wheat genotypes, the spikes of which were infected by Fusarium graminearum. The greatest number of genes was upregulated in Nobeokabouzu-komugi followed by Sumai 3, whereas the minimum expression in Gamenya was at three days after inoculation (dai). In Nobeokabouzu-komugi, high expression of detoxification genes, such as multidrug-resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters, in addition to systemic defense-related genes, were identified at the early stage of infection. This early response of the highly-resistant genotype implies a different resistance response from the other resistant genotype, Sumai 3, primarily containing local defense-related genes, such as cell wall defense genes. In Gamenya, the expression of all three functional groups was minimal. The differences in these molecular responses with respect to the time points confirmed the variation in the genotypes. For the first time, we report the nature of gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease establishment stage and the possible underlying molecular response

    Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    Get PDF
    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7-10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1-9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S-28S rRNA genes and telomeric (TTAGGG)( n ) sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae
    corecore