65 research outputs found

    A Real Time Metridia Luciferase Based Non-Invasive Reporter Assay of Mammalian Cell Viability and Cytotoxicity via the β-actin Promoter and Enhancer

    Get PDF
    Secreted reporter molecules offer a means to evaluate biological processes in real time without the need to sacrifice samples at pre-determined endpoints. Here we have adapted the secreted bioluminescent reporter gene, Metridia luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been codon optimized for expression in human cells (hMLuc) and placed under the control of the human β-actin promoter and enhancer. Metridia luciferase activity of stably transfected cell models corresponded linearly with cell number over a 4-log dynamic range, detecting as few as 40 cells. When compared to standard endpoint viability assays, which measure the mitochondrial dehydrogenase reduction of tetrazolium salts, the hMLuc viability assay had a broader linear range of detection, was applicable to large tissue culture vessels, and allowed the same sample to be repeatedly measured over several days. Additional studies confirmed that MLuc activity was inhibited by serum, but demonstrated that assay activity remained linear and was measurable in the serum of mice bearing subcutaneous hMLuc-expressing tumors. In summary, these comparative studies demonstrate the value of humanized Metridia luciferase as an inexpensive and non-invasive method for analyzing viable cell number, growth, tumor volume, and therapeutic response in real time

    Congenital Hypothyroidism Long‐Term Follow‐up Project: Navigating the Rough Waters of a Multi‐Center, Multi‐State Public Health Project

    Get PDF
    The Region 4 Midwest Genetics Collaborative, made up of seven regional states (Illinois, Indiana, Kentucky, Michigan, Minnesota, Ohio, and Wisconsin), brought together pediatric endocrinologists, state laboratory experts, public health follow‐up specialists, and parents of children with congenital hypothyroidism (CH) to identify the three‐year follow‐up management and education patterns of primary care clinicians and pediatric endocrinologists in the care of children diagnosed with CH by state newborn screening (NBS) programs. Among a number of challenges, each state had different NBS methods, data systems, public health laws, and institutional review board (IRB) requirements. Furthermore, the diagnosis of CH was complicated by the timing of the NBS sample, the gestational age, weight, and co‐morbidities at delivery. There were 409 children with CH identified through NBS in 2007 in the seven state region. The clinician of record and the parents of these children were invited to participate in a voluntary survey. Approximately 64 % of clinician surveys were collected with responses to questions relating to treatment, monitoring practices, educational resources, genetic counseling, and services provided to children with confirmed CH and their families. Nearly one‐quarter (24 %) of parents surveyed responded to questions relating to treatment, education, genetic counseling, resources, and services they received or would like to receive. De‐identified data from six of the seven states were compiled for analysis, with one state being unable to obtain IRB approval within the study timeline. The data from this collaborative effort will improve state follow‐up programs and aid in developing three‐year follow‐up guidelines for children diagnosed with CH. To aid in the facilitation of similar public health studies, this manuscript highlights the challenges faced, and focuses on the pathway to a successful multi‐state public health endeavor.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147153/1/jgc40464.pd

    Discontinuation of thyroid hormone treatment among children in the United States with congenital hypothyroidism: findings from health insurance claims data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid hormone treatment in children with congenital hypothyroidism can prevent intellectual disability. Guidelines recommend that children diagnosed with congenital hypothyroidism through newborn screening remain on treatment to at least 3 years of age, after which a trial off therapy can determine which children have transient hypothyroidism. The purpose of this study was to describe the rate at which children with congenital hypothyroidism in the United States discontinue thyroid hormone treatment in early childhood.</p> <p>Methods</p> <p>Retrospective analysis of the 2002-2006 MarketScan<sup>® </sup>Commercial Claims and Encounters research databases and the 2001-2005 MarketScan Multi-State Medicaid databases. Children were classified as having congenital hypothyroidism based on billing codes and having filled a prescription for thyroid hormone treatment. Kaplan-Meier curve analysis was used to determine discontinuation rates.</p> <p>Results</p> <p>There were a total of 412 Medicaid-enrolled children and 292 privately-insured children with presumed congenital hypothyroidism included in this study. The overall birth prevalence of congenital hypothyroidism across both datasets was about 1 per 2,300. By 36 months, the percentage who had discontinued thyroid replacement treatment was 38% (95% Confidence Interval: 32%-44%). Medicaid-enrolled children had a more rapid decline in the first 24 months of treatment compared to those with private insurance (<it>P </it>= 0.02).</p> <p>Conclusions</p> <p>More than one-third of children treated for congenital hypothyroidism discontinued treatment within 36 months, which is inconsistent with current guidelines. It is not known how many of these children required continued treatment or experience adverse effects from discontinuation. These findings emphasize the critical need for follow-up systems to monitor the outcome of newborn screening.</p

    Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia

    Get PDF
    Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. Copyright

    Training attention control of very preterm infants: protocol for a feasibility study of the Attention Control Training (ACT)

    Get PDF
    Background Children born preterm may display cognitive, learning, and behaviour difficulties as they grow up. In particular, very premature birth (gestation age between 28 and less than 32 weeks) may put infants at increased risk of intellectual deficits and attention deficit disorder. Evidence suggests that the basis of these problems may lie in difficulties in the development of executive functions. One of the earliest executive functions to emerge around 1 year of age is the ability to control attention. An eye-tracking-based cognitive training programme to support this emerging ability, the Attention Control Training (ACT), has been developed and tested with typically developing infants. The aim of this study is to investigate the feasibility of using the ACT with healthy very preterm (VP) infants when they are 12 months of age (corrected age). The ACT has the potential to address the need for supporting emerging cognitive abilities of VP infants with an early intervention, which may capitalise on infants’ neural plasticity. Methods/design The feasibility study is designed to investigate whether it is possible to recruit and retain VP infants and their families in a randomised trial that compares attention and social attention of trained infants against those that are exposed to a control procedure. Feasibility issues include the referral/recruitment pathway, attendance, and engagement with testing and training sessions, completion of tasks, retention in the study, acceptability of outcome measures, quality of data collected (particularly, eye-tracking data). The results of the study will inform the development of a larger randomised trial. Discussion Several lines of evidence emphasise the need to support emerging cognitive and learning abilities of preterm infants using early interventions. However, early interventions with preterm infants, and particularly very preterm ones, face difficulties in recruiting and retaining participants. These problems are also augmented by the health vulnerability of this population. This feasibility study will provide the basis for informing the implementation of an early cognitive intervention for very preterm infants. Trial registration Registered Registration ID: NCT03896490. Retrospectively registered at Clinical Trials Protocol Registration and Results System (clinicaltrials.gov)

    Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer : A systematic review

    Get PDF
    Publisher Copyright: © 2016 Endzeliņš et al.Prostate cancer, the second most frequently diagnosed cancer in males worldwide, is estimated to be diagnosed in 1.1 million men per year. Introduction of PSA testing substantially improved early detection of prostate cancer, however it also led to overdiagnosis and subsequent overtreatment of patients with an indolent disease. Treatment outcome and management of prostate cancer could be improved by the development of non-invasive biomarker assays that aid in increasing the sensitivity and specificity of prostate cancer screening, help to distinguish aggressive from indolent disease and guide therapeutic decisions. Prostate cancer cells release miRNAs into the bloodstream, where they exist incorporated into ribonucleoprotein complexes or extracellular vesicles. Later, cell-free miRNAs have been found in various other biofluids. The initial RNA sequencing studies suggested that most of the circulating cell-free miRNAs in healthy individuals are derived from blood cells, while specific disease-associated miRNA signatures may appear in the circulation of patients affected with various diseases, including cancer. This raised a hope that cell-free miRNAs may serve as non-invasive biomarkers for prostate cancer. Indeed, a number of cell-free miRNAs that potentially may serve as diagnostic, prognostic or predictive biomarkers have been discovered in blood or other biofluids of prostate cancer patients and need to be validated in appropriately designed longitudinal studies and clinical trials. In this review, we systematically summarise studies investigating cell-free miRNAs in biofluids of prostate cancer patients and discuss the utility of the identified biomarkers in various clinical scenarios. Furthermore, we discuss the possible mechanisms of miRNA release into biofluids and outline the biological questions and technical challenges that have arisen from these studies.publishersversionPeer reviewe

    The effect of high-altitude on human skeletal muscle energetics: 31P-MRS results from the caudwell xtreme everest expedition

    Get PDF
    Many disease states are associated with regional or systemic hypoxia. The study of healthy individuals exposed to high-altitude hypoxia offers a way to explore hypoxic adaptation without the confounding effects of disease and therapeutic interventions. Using 31P magnetic resonance spectroscopy and imaging, we investigated skeletal muscle energetics and morphology after exposure to hypobaric hypoxia in seven altitude-naïve subjects (trekkers) and seven experienced climbers. The trekkers ascended to 5300 m while the climbers ascended above 7950 m. Before the study, climbers had better mitochondrial function (evidenced by shorter phosphocreatine recovery halftime) than trekkers: 16±1 vs. 22±2 s (mean ± SE, p<0.01). Climbers had higher resting [Pi] than trekkers before the expedition and resting [Pi] was raised across both groups on their return (PRE: 2.6±0.2 vs. POST: 3.0±0.2 mM, p<0.05). There was significant muscle atrophy post-CXE (PRE: 4.7±0.2 vs. POST: 4.5±0.2 cm2, p<0.05), yet exercising metabolites were unchanged. These results suggest that, in response to high altitude hypoxia, skeletal muscle function is maintained in humans, despite significant atrophy
    corecore