849 research outputs found

    Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction

    Full text link
    While it is empirically accepted that the fixed-node diffusion Monte-Carlo (FN-DMC) depends only weakly on the size of the one-particle basis sets used to expand its guiding functions, limits of this observation are not settled yet. Our recent work indicates that under the FN error cancellation conditions, augmented triple zeta basis sets are sufficient to achieve a benchmark level of 0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a possibility of truncation of the one-particle basis sets used in FN-DMC guiding functions that has no visible effect on the accuracy of the production FN-DMC energy differences. The proposed scheme leads to no significant increase in the local energy variance, indicating that the total CPU cost of large-scale benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    The 5′ Flanking Region and Intron1 of the Bovine Prion Protein Gene (PRNP) Are Responsible for Negative Feedback Regulation of the Prion Protein

    Get PDF
    Transcription factors regulate gene expression by controlling the transcription rate. Some genes can repress their own expression to prevent over production of the corresponding protein, although the mechanism and significance of this negative feedback regulation remains unclear. In the present study, we describe negative feedback regulation of the bovine prion protein (PrP) gene PRNP in Japanese Black cattle. The PrP-expressing plasmid pEF-boPrP and luciferase-expressing plasmids containing the partial promoter fragment of PRNP incorporating naturally occurring single-nucleotide or insertion/deletion polymorphisms were transfected into N2a cells. Transfection of pEF-boPrP induced PrP overexpression and decreased the promoter activity of PRNP in the wild-type haplotype (23-bp Del, 12-bp Del, and −47C). Reporter gene assays further demonstrated that the 12- and 23-bp Ins/Del polymorphisms, which are thought to be associated with Sp1 (Specific protein 1) and RP58 (Repressor Protein with a predicted molecular mass of 58 kDa), in intron1 and the upstream region, respectively, and an additional polymorphism (−47C→A) in the Sp1-binding site responded differently to PrP overexpression. With the −47C SNP, the presence of the Del in either the 23-bp Ins/Del or the 12-bp Ins/Del allele was essential for the negative feedback caused by PrP overexpression. Furthermore, deletion mutants derived from the wild-type haplotype showed that nucleotides −315 to +2526, which include the 5′-flanking region and exon1, were essential for the response. These results indicate that certain negative feedback response elements are located in these sequences, suggesting that regulation by transcription factors such as Sp1 and RP58 may contribute to the negative feedback mechanism of PRNP

    Company for the Ultra-high Density, Ultra-short Period Sub-Earth GJ 367 b: Discovery of Two Additional Low-mass Planets at 11.5 and 34 Days

    Get PDF
    GJ 367 is a bright (V ≈ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph—collecting 371 high-precision measurements over a baseline of nearly 3 yr—and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of M b = 0.633 ± 0.050 M ⊕ and a radius of R b = 0.699 ± 0.024 R ⊕, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of ρ b = 10.2 ± 1.3 g cm−3, i.e., 85% higher than Earth’s density. We revealed the presence of two additional non-transiting low-mass companions with orbital periods of ∼11.5 and 34 days and minimum masses of M c sin i c = 4.13 ± 0.36 M ⊕ and M d sin i d = 6.03 ± 0.49 M ⊕, respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of 0.91 − 0.23 + 0.07 . How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet

    TOI-733 b: A planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised
    corecore