174 research outputs found

    Evolution in Yoderimyinae (Eomyidae: Rodentia), with new material from the White River Formation (Chadronian) at Flagstaff Rim, Wyoming

    Get PDF
    Three species of Yoderimyinae (Eomyidae: Rodentia) are recognized from the lower part of the White River Formation (early to medial Chadronian) in the Flagstaff Rim area, Wyoming. The new material allows an improved diagnosis for the subfamily. The enamel microstructure of Yoderimyinae supports its inclusion in the Eomyidae. A new genus, Zemiodontomys, is established for Yoderimys burkei Black, and new material, including upper dentition, is referred to this species. This genus differs from Yoderimys in having higher crowned and more lophodont teeth and in lacking P3. A second new genus, Litoyoderimys, is established for Yoderimys lustrorum Wood, and a new species, L. auogoleus, is referred to the genus. This genus has lower crowned, more cuspate teeth than Yoderimys. Through early and medial Chadronian time, evolution in yoderimyines includes the following morphologic transformations: increase in size; increase in crown height and lophodonty of cheek teeth; reduction of P3 (from double-rooted, to single-rooted, to absent); increase in relative size of P4 and p4; and increased longitudinal torsion of the mandibl

    The First Eocene Rodents From the Pacific Northwest, USA

    Get PDF
    The Oligocene and Miocene faunas of the John Day Basin are diverse and very well-studied, including a large number of small mammal species. Though Eocene floras from Oregon are well-known, Eocene faunas include relatively few taxa from only two described localities in the Clarno area. The first Eocene rodents from the John Day Basin also include the first ischyromyids from the Pacific Northwest. Several rodent incisors were recovered from the Hancock Mammal Quarry at Clarno, representing the first rodent specimens known from the Clarno Formation. The Hancock Mammal Quarry lies between tuffs dated 42.7 and 39.22 Ma, meaning these rodents are latest Uintan or earliest Duchesnean in age. Several ischyromyids are also described from the Big Basin Member of the John Day Formation. From a Duchesnean locality between tuffs dated 39.22 and 38.4 Ma a single tooth of Pseudotomus was recovered, which is as large as any known ischyromyid. Another Big Basin Member site yielded a new genus and species of ischyromyid. That site lies above an ash dated 36.21 Ma and biostratigraphy confirms a Chadronian age. These rodents help fill important gaps in the fossil record of the John Day Basin and will facilitate comparisons with other Eocene sites in North America and Asia

    Mitigating Noise in Interferometric Gravitational Wave Detectors

    Get PDF
    Gravitational waves, first predicted by Einstein in 1916, eluded detection for nearly a century. These faint ripples in the fabric of spacetime, with typical strain amplitudes at the Earth on the order of |h| ∼ 10−22, carry secrets of the universe untold by electromagnetic radiation. Following decades of research and development, a network of terrestrial interferometric detectors succeeded in measuring the passing of a gravitational wave (GW150914) for the first time in 2015. Individual detectors within this network are currently said to be operating in a “second-generation” configuration; over the next decade, planned upgrades will take these detectors beyond this into a new generation. This thesis concerns the characterization and reduction of noise in one of these second-generation detectors, Advanced LIGO, as well as efforts underway to improve its sensitivity in the coming years. The first part of this thesis is a detailed overview of gravitational waves, the history of gravitational wave detection, and a reasonably thorough description of the Advanced LIGO detector. Particular attention is paid to a pedagogical motivation of the optical configuration of Advanced LIGO with reference to its forebears. This part ends with an overview of the sources of noise limiting the sensitivity of Advanced LIGO, and an exposition of plans to reduce their influence in the future. The second part describes the development of a laser gyroscope for use in tilt sensing in Advanced LIGO, starting with a motivation of the work based on limitations in the area of seismic noise sensing and cancellation. The third part recounts the design, fabrication, testing, installation and commissioning of an important component of the Advanced LIGO detector: the output mode cleaner (OMC). The fourth part outlines a proposed scheme for reduction of quantum noise in gravitational wave detectors and other experiments. In particular, this scheme allows for the operation of a so-called “optical spring” cavity in such a way as to be largely immune from the deleterious effects of quantum radiation pressure noise. The fifth and final part describes progress towards a direct measurement of thermal noise in thin silicon ribbons, which is pertinent to the design of suspensions in future cryogenic gravitational wave detectors. This thesis has the internal LIGO document number P1900035.</p

    Place of Physics in Secondary Education

    Get PDF
    During the last few years there has been an increasing awareness of the inadequacies of present-day teaching of physics in the American secondary school. The traditional physics course has been subjected to much criticism and concern has been expressed in many quarters over its deficiencies. The purpose of this report is to consider some of the criticisms which have been leveled at the teaching of physics at the high school level and some of the suggested means for its improvement. This has been done by surveying some of the literature which has been written in the last few years by prominent educators and scientists regarding this subject. The report covers briefly the history of physics teaching in the United States, a review of some statistics on the enrollment in high school physics and a discussion of the aims and objectives of physics teaching. The present status of physics teaching is evaluated with consideration of the physics teacher, the course content and methods of teaching. The work of the Physical Science Study Committee is reviewed and consideration is given to the use of the general physical science course. The diversity of opinion encountered in reading current material seems to indicate that the problems are complex and that there is no simple so:t.ution to the problems �acing high school physics courses. This report does not attempt to suggest any such solutions but concerns itself with apparent trends and some 0� the more commonly expressed ideas. Most critics seem to agree that there is need for a change in many aspects o:f the physics curriculum but specific suggestions on what these changes should be vary greatly. Surveys indicate that there has been a steady decrease in the percentage of high school students taking a course in physics. Most critics agree that the conventional physics course tries to cover too much material and chooses that material unwisely. The key to the problems probably lie with the physics teacher himself. There is a great need for improvement in the status and qualifications of the seccndary school physics teacher. The Physical Science Study Committee has proposed an interesting and entirely new type of physics course which they hope will answer many of the needs of high school physics.Natural Scienc

    Residual amplitude modulation in interferometric gravitational wave detectors

    Get PDF
    The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity

    Re-Evaluation of Sinocastor (Rodentia: Castoridae) with Implications on the Origin of Modern Beavers

    Get PDF
    The extant beaver, Castor, has played an important role shaping landscapes and ecosystems in Eurasia and North America, yet the origins and early evolution of this lineage remain poorly understood. Here we use a geometric morphometric approach to help re-evaluate the phylogenetic affinities of a fossil skull from the Late Miocene of China. This specimen was originally considered Sinocastor, and later transferred to Castor. The aim of this study was to determine whether this form is an early member of Castor, or if it represents a lineage outside of Castor. The specimen was compared to 38 specimens of modern Castor (both C. canadensis and C. fiber) as well as fossil specimens of C. fiber (Pleistocene), C. californicus (Pliocene) and the early castorids Steneofiber eseri (early Miocene). The results show that the specimen falls outside the Castor morphospace and that compared to Castor, Sinocastor possesses a: 1) narrower post-orbital constriction, 2) anteroposteriorly shortened basioccipital depression, 3) shortened incisive foramen, 4) more posteriorly located palatine foramen, 5) longer rostrum, and 6) longer braincase. Also the specimen shows a much shallower basiocciptal depression than what is seen in living Castor, as well as prominently rooted molars. We conclude that Sinocastor is a valid genus. Given the prevalence of apparently primitive traits, Sinocastor might be a near relative of the lineage that gave rise to Castor, implying a possible Asiatic origin for Castor

    A transiting M-dwarf showing beaming effect in the field of Ruprecht 147

    Get PDF
    We report the discovery and characterization of an eclipsing M5Vdwarf star, orbiting a slightly evolved F7V main sequence star. In contrast to previous claims in the literature, we confirm that the system does not belong to the galactic open cluster Ruprecht 147. We determine its fundamental parameters combining K2 time-series data with spectroscopic observations from the McDonald Observatory, FIES@NOT, and HIRES@KECK. The very precise photometric data from the K2 mission allows us to measure variations caused by the beaming effect (relativistic doppler boosting), ellipsoidal variation, reflection, and the secondary eclipse. We determined the radial velocity using spectroscopic observations and compare it to the radial velocity determined from the beaming effect observed in the photometric data. The M5V star has a radius of 0.200+0.007−0.008  R⊙ and a mass of 0.187+0.012−0.013  M⊙. The primary star has a radius of 1.518+0.038−0.049 R⊙ and a mass of 1.008+0.081−0.097 M⊙. The orbital period is 5.441995 ± 0.000007 d. The system is one of the few eclipsing systems with observed beaming effect and spectroscopic radial velocity measurements and it can be used as a test case for the modelling of the beaming effect. Current and forthcoming space missions such as TESS and PLATO might benefit from the analysis of the beaming effect to estimate the mass of transiting companions without the need for radial velocity follow up observations, provided that the systematic sources of noise affecting this method are well understood.Funding for the K2 mission is provided by the NASA Science Mission directorate. HJD acknowledges support by grant ESP2015-65712-C5-4-R of the Spanish Secretary of State for R&D&i (MINECO). ME and WDC were supported by NASA grant NNX16AE70G to The University of Texas at Austin

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~g cm−3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass M⋆M_\star=0.99±0.050.99\pm0.05~M⊙\mathrm{M_{\odot}}, radius R⋆R_\star=1.01±0.041.01\pm0.04~R⊙\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.30681−0.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.5715−0.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.55−0.21+0.241.55^{+0.24}_{-0.21} R⊕R_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa
    • …
    corecore