149 research outputs found

    Re-Evaluation of Sinocastor (Rodentia: Castoridae) with Implications on the Origin of Modern Beavers

    Get PDF
    The extant beaver, Castor, has played an important role shaping landscapes and ecosystems in Eurasia and North America, yet the origins and early evolution of this lineage remain poorly understood. Here we use a geometric morphometric approach to help re-evaluate the phylogenetic affinities of a fossil skull from the Late Miocene of China. This specimen was originally considered Sinocastor, and later transferred to Castor. The aim of this study was to determine whether this form is an early member of Castor, or if it represents a lineage outside of Castor. The specimen was compared to 38 specimens of modern Castor (both C. canadensis and C. fiber) as well as fossil specimens of C. fiber (Pleistocene), C. californicus (Pliocene) and the early castorids Steneofiber eseri (early Miocene). The results show that the specimen falls outside the Castor morphospace and that compared to Castor, Sinocastor possesses a: 1) narrower post-orbital constriction, 2) anteroposteriorly shortened basioccipital depression, 3) shortened incisive foramen, 4) more posteriorly located palatine foramen, 5) longer rostrum, and 6) longer braincase. Also the specimen shows a much shallower basiocciptal depression than what is seen in living Castor, as well as prominently rooted molars. We conclude that Sinocastor is a valid genus. Given the prevalence of apparently primitive traits, Sinocastor might be a near relative of the lineage that gave rise to Castor, implying a possible Asiatic origin for Castor

    A transiting M-dwarf showing beaming effect in the field of Ruprecht 147

    Get PDF
    We report the discovery and characterization of an eclipsing M5Vdwarf star, orbiting a slightly evolved F7V main sequence star. In contrast to previous claims in the literature, we confirm that the system does not belong to the galactic open cluster Ruprecht 147. We determine its fundamental parameters combining K2 time-series data with spectroscopic observations from the McDonald Observatory, FIES@NOT, and HIRES@KECK. The very precise photometric data from the K2 mission allows us to measure variations caused by the beaming effect (relativistic doppler boosting), ellipsoidal variation, reflection, and the secondary eclipse. We determined the radial velocity using spectroscopic observations and compare it to the radial velocity determined from the beaming effect observed in the photometric data. The M5V star has a radius of 0.200+0.007−0.008  R⊙ and a mass of 0.187+0.012−0.013  M⊙. The primary star has a radius of 1.518+0.038−0.049 R⊙ and a mass of 1.008+0.081−0.097 M⊙. The orbital period is 5.441995 ± 0.000007 d. The system is one of the few eclipsing systems with observed beaming effect and spectroscopic radial velocity measurements and it can be used as a test case for the modelling of the beaming effect. Current and forthcoming space missions such as TESS and PLATO might benefit from the analysis of the beaming effect to estimate the mass of transiting companions without the need for radial velocity follow up observations, provided that the systematic sources of noise affecting this method are well understood.Funding for the K2 mission is provided by the NASA Science Mission directorate. HJD acknowledges support by grant ESP2015-65712-C5-4-R of the Spanish Secretary of State for R&D&i (MINECO). ME and WDC were supported by NASA grant NNX16AE70G to The University of Texas at Austin

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~g cm−3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass M⋆M_\star=0.99±0.050.99\pm0.05~M⊙\mathrm{M_{\odot}}, radius R⋆R_\star=1.01±0.041.01\pm0.04~R⊙\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.30681−0.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.5715−0.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.55−0.21+0.241.55^{+0.24}_{-0.21} R⊕R_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P≲2P\lesssim 2 days, planets with a radius Rp≳2 R⊕R_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2 R⊕\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2 R⊕\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 R⊕R_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa
    • …
    corecore