703 research outputs found

    Symptom profiles of psychiatric disorders based on graded disease classes: an illustration using data from the WHO International Pilot Study of Schizophrenia

    Get PDF
    The Grade of Membership (GoM) model is a classification procedure which allows a person to be a member of more than one diagnostic class. It simultaneously quantifies the degrees of membership in classes while generating the discrete symptom profiles or ‘pure types' describing classes. The model was applied to the symptomatology, history, and follow-up of 1065 cases in the WHO International Pilot Study of Schizophrenia. The model produced an eight diagnostic class or ‘pure type' solution, of which five were related to the diagnostic concepts of schizophrenia and paranoid disorder, two types were affective disorders, and one asymptomatic type. A subtype of paranoid schizophreniform disorder found primarily in developing countries was identified. There was a strong association between pure types and the original clinical and computer generated (CATEGO) diagnoses. A GoM based psychiatric classification might more clearly identify core disease processes than conventional classification models by filtering the confounding effects of individual heterogeneity from pure type definition

    Dynamic visual evoked response

    Get PDF
    Dynamic visual evoked respons

    Multi-Phonon γ\gamma-Vibrational Bands and the Triaxial Projected Shell Model

    Full text link
    We present a fully quantum-mechanical, microscopic, unified treatment of ground-state band and multi-phonon γ\gamma-vibrational bands using shell model diagonalization with the triaxial projected shell model. The results agree very well with data on the g- and γ\gamma-band spectra in 156−170^{156-170}Er, as well as with recently measured 4+4^+ 2-phonon γ\gamma-bandhead energies in 166^{166}Er and 168^{168}Er. Multi-phonon γ\gamma-excitation energies are predicted.Comment: 4 pages, 4 figures, submitted to Phys. Lett.

    Spectroscopy of the neutron-rich actinide nucleus U-240 following multinucleon-transfer reactions

    Get PDF
    B. Birkenbach et al.; 9 pags.; 9 figs.; 2 tabs.; PACS number(s): 23.20.Lv, 25.70.Hi, 27.90.+b, 29.40.GxBackground: Nuclear structure information for the neutron-rich actinide nuclei is important since it is the benchmark for theoretical models that provide predictions for the heaviest nuclei. Purpose: gamma-ray spectroscopy of neutron-rich heavy nuclei in the actinide region. Method: Multinucleon-transfer reactions in Zn-70 + U-238 and Xe-136 + U-238 have been measured in two experiments performed at the INFN Legnaro, Italy. In the Zn-70 experiment the high-resolution HPGe Clover Array (CLARA) coupled to the magnetic spectrometer PRISMA was employed. In the Xe-136 experiment the high-resolution Advanced Gamma Tracking Array (AGATA) was used in combination with PRISMA and the Detector Array for Multinucleon Transfer Ejectiles (DANTE). Results: The ground-state band (g.s. band) of U-240 was measured up to the 20(+) level and a tentative assignment was made up to the (24(+)) level. Results from gamma gamma coincidence and from particle coincidence analyses are shown. Moments of inertia (MoI) show a clear upbend. Evidence for an extended first negative-parity band of U-240 is found. Conclusions: A detailed comparison with latest calculations shows best agreement with cranked relativistic Hartree-Bogoliubov (CRHB) calculations for the g.s. band properties. The negative-parity band shows the characteristics of a K-pi = 0 band based on an octupole vibration. ©2015 American Physical SocietyThe research leading to these results has received funding from the German Bundesministerium fur Bildung ¨ und Forschung (BMBF) under Contract No. 05P12PKFNE TP4, the European Union Seventh Framework Programme (FP7/2007-2013) under Grant No. 262010-ENSAR, and the Spanish Ministerio de Ciencia e Innovacion under Contract No. FPA2011-29854-C04. A.V. thanks the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) for financial support. One of the authors (A. Gadea) was supported by MINECO, Spain, under Grants No. FPA2011-29854-C04 759 and No. FPA2014-57196-C5; Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019; and EU under the FEDER program.Peer Reviewe

    Lifetime measurements in 63^{63}Co and 65^{65}Co

    Get PDF
    Lifetimes of the 9/21−9/2^-_1 and 3/21−3/2^-_1 states in 63^{63}Co and the 9/21−9/2^-_1 state in 65^{65}Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multi-nucleon transfer reactions in inverse kinematics. Gamma rays were measured with the EXOGAM Ge array and the recoiling fragments were fully identified using the large-acceptance VAMOS spectrometer. The E2 transition probabilities from the 3/21−3/2^-_1 and 9/21−9/2^-_1 states to the 7/2−7/2^- ground state could be extracted in 63^{63}Co as well as an upper limit for the 9/21−→7/21−9/2^-_1\rightarrow7/2^-_1 BB(E2) value in 65^{65}Co. The experimental results were compared to large-scale shell-model calculations in the pfpf and pfg9/2pfg_{9/2} model spaces, allowing to draw conclusions on the single-particle or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical Review

    Greening Capitalism? A Marxist Critique of Carbon Markets

    Get PDF
    Climate change is increasingly being recognized as a serious threat to dominant modes of social organization, inspiring suggestions that capitalism itself needs to be transformed if we are to ‘decarbonize’ the global economy. Since the Kyoto Protocol in 1997, carbon markets have emerged as the main politico-economic tools in global efforts to address climate change. Newell and Paterson (2010) have recently claimed that the embrace of carbon markets by financial and political elites constitutes a possible first step towards the transformation of current modes of capitalist organization into a new form of greener, more sustainable ‘climate capitalism.’ In this paper, we argue that the institutionalization of carbon markets does not, in fact, represent a move towards the radical transformation of capitalism, but is better understood as the most recent expression of ongoing trends of ecological commodification and expropriation, driving familiar processes of uneven and crisis-prone development. In this paper, we review four critical Marxist concepts: metabolic rift (Foster, 1999), capitalism as world ecology (Moore, 2011a), uneven development and accumulation through dispossession (Harvey, 2003, 2006), and sub-imperialism (Marini, 1972, 1977), developing a framework for a Marxist analysis of carbon markets. Our analysis shows that carbon markets form part of a longer historical development of global capitalism and its relation to nature. Carbon markets, we argue, serve as creative new modes of accumulation, but are unlikely to transform capitalist dynamics in ways that might foster a more sustainable global economy. Our analysis also elucidates, in particular, the role that carbon markets play in exacerbating uneven development within the Global South, as elites in emerging economies leverage carbon market financing to pursue new strategies of sub-imperial expansion. </jats:p

    High-spin structure of Xe 134

    Get PDF
    A. Vogt et al. ; 12 págs.; 9 figs.; 1 tab.Detailed spectroscopic information on the N∼82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in Xe134 is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in Xe136+U238 and Xe136+Pb208 MNT reactions and (ii) as a fission product in the Xe136+U238 reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The Xe136+Pt198 MNT reaction was studied with the γ-ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in Xe134 on top of the two long-lived isomers are discovered based on γγ-coincidence relationships and information on the γ-ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of Xe134 is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.The research leading to these results has received funding from the German BMBF under Contract No. 05P12PKFNE TP4, from the European Union Seventh Framework Programme FP7/2007–2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministerio de Ciencia e Innovación under Contract No. FPA2011-29854-C04, from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5, from the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS), from the UK Science and Technology Facilities Council (STFC), and from the US National Science Foundation (NSF). One of the authors (A. Gadea) has been supported by the Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019 and EU under the FEDER program.Peer Reviewe
    • …
    corecore