2,444 research outputs found

    Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions

    Full text link
    A hybrid 2D theoretical model is presented to describe thermoplastic deformation effects on silicon surfaces induced by single and multiple ultrashort pulsed laser irradiation in submelting conditions. An approximation of the Boltzmann transport equation is adopted to describe the laser irradiation process. The evolution of the induced deformation field is described initially by adopting the differential equations of dynamic thermoelasticity while the onset of plastic yielding is described by the von Mise's stress. Details of the resulting picometre sized crater, produced by irradiation with a single pulse, are then discussed as a function of the imposed conditions and thresholds for the onset of plasticity are computed. Irradiation with multiple pulses leads to ripple formation of nanometre size that originates from the interference of the incident and a surface scattered wave. It is suggested that ultrafast laser induced surface modification in semiconductors is feasible in submelting conditions, and it may act as a precursor of the incubation effects observed at multiple pulse irradiation of materials surfaces.Comment: To appear in the Journal of Applied Physic

    Two Years after the Fourth External Review: TDR Moves Forward with a New Vision and Strategy

    Get PDF
    summary:In the paper it is proved that a nontrivial direct product of lattice ordered groups is never affine complete

    Insights from geodynamo simulations into long-term geomagnetic field behaviour

    Get PDF
    Detailed knowledge of the long-term spatial configuration and temporal variability of the geomagnetic field is lacking because of insufficient data for times prior to 10 ka. We use realisations from suitable numerical simulations to investigate three important questions about stability of the geodynamo process: is the present field representative of the past field; does a time-averaged field actually exist; and, supposing it exists, how long is needed to define such a field. Numerical geodynamo simulations are initially selected to meet existing criteria for morphological similarity to the observed magnetic field. A further criterion is introduced to evaluate similarity of long-term temporal variations. Allowing for reasonable uncertainties in the observations, observed and synthetic axial dipole moment frequency spectra for time series of order a million years in length should be fit by the same power law model. This leads us to identify diffusion time as the appropriate time scaling for such comparisons. In almost all simulations, intervals considered to have good morphological agreement between synthetic and observed field are shorter than those of poor agreement. The time needed to obtain a converged estimate of the time-averaged field was found to be comparable to the length of the simulation, even in non-reversing models, suggesting that periods of stable polarity spanning many magnetic diffusion times are needed to obtain robust estimates of the mean dipole field. Long term field variations are almost entirely attributable to the axial dipole; nonzonal components converge to long-term average values on relatively short timescales (15-20 kyr). In all simulations, the time-averaged spatial power spectrum is characterised by a zigzag pattern as a function of spherical harmonic degree, with relatively higher power in odd degrees than in even degrees. We suggest that long-term spatial characteristics of the observed field may emerge on averaging times that are within reach for the next generation of global time-varying paleomagnetic field models.

    In system photoelectron spectroscopy study of tin oxide layers produced from tetrakis dimethylamino tin by plasma enhanced atomic layer deposition

    Get PDF
    Tin oxide SnO2 layers were deposited using plasma enhanced atomic layer deposition with tetrakis dimethylamino tin precursor and oxygen plasma. The deposited layers were analyzed by spectral ellipsometry, conductivity measurements, and in system photoelectron spectroscopy. Within a deposition temperature range of 90 210 amp; 8201; C, the resistivity of the SnO2 layers decreases by 5 orders of magnitude with increasing deposition temperature. At the same time, the refractive index at 632.8 amp; 8201;nm increases from 1.7 to 1.9. These changes in bulk layer properties are connected to results from photoelectron spectroscopy. It is found that decreasing carbon and nitrogen contaminations in the tin oxide layers lead to decreasing optical band gaps and increasing refractive index. Additionally, for the deposited SnO2 layers, a shoulder in the O 1s core level spectrum is observed that decreases with the deposition temperature and thus is proposed to be related to hydroxyl group

    The Dutch EPS Registry:increasing the knowledge of encapsulating peritoneal sclerosis

    Get PDF
    Encapsulating peritoneal sclerosis (EPS) is a rare condition characterised by fibrotic thickening of the visceral peritoneum, leading to encapsulating of the intestines with partial or total intestinal obstruction. EPS is a serious complication of peritoneal dialysis (PD) with high morbidity and a mortality exceeding 50%. At present, there is uncertainty concerning the incidence and the risk factors involved in the development of EPS. To address these questions a nationwide registry has been initiated. The primary goals of the registry are to record the incidence of EPS and investigate the association of different variables, such as PD duration, medication, dialysis solutions and kidney transplantation with EPS. The registry will improve the knowledge of EPS and will serve to develop guidelines and necessary management strategies. From the registry different research activities can be initiated. A major challenge lies in the establishment of criteria that allow a timely diagnosis of EPS. At present, there are no diagnostic tools that can accurately detect EPS at an early stage. For this reason, besides patients with proven EPS, the clinical suspicion of EPS will be a sufficient criterion for inclusion in the registry. This nationwide EPS registry is currently enrolling patients

    Seeing motion and apparent motion

    Get PDF
    In apparent motion experiments, participants are presented with what is in fact a succession of two brief stationary stimuli at two different locations, but they report an impression of movement. Philosophers have recently debated whether apparent motion provides evidence in favour of a particular account of the nature of temporal experience. I argue that the existing discussion in this area is premised on a mistaken view of the phenomenology of apparent motion and, as a result, the space of possible philosophical positions has not yet been fully explored. In particular, I argue that the existence of apparent motion is compatible with an account of the nature of temporal experience that involves a version of direct realism. In doing so, I also argue against two other claims often made about apparent motion, viz. that apparent motion is the psychological phenomenon that underlies motion experience in the cinema, and that apparent motion is subjectively indistinguishable from real motion

    The Low Quiescent X-Ray Luminosity of the Transient X-Ray Burster EXO 1747-214

    Full text link
    We report on X-ray and optical observations of the X-ray burster EXO 1747-214. This source is an X-ray transient, and its only known outburst was observed in 1984-1985 by the EXOSAT satellite. We re-analyzed the EXOSAT data to derive the source position, column density, and a distance upper limit using its peak X-ray burst flux. We observed the EXO 1747-214 field in 2003 July with the Chandra X-ray Observatory to search for the quiescent counterpart. We found one possible candidate just outside the EXOSAT error circle, but we cannot rule out the possibility that the source is unrelated to EXO 1747-214. Our conclusion is that the upper limit on the unabsorbed 0.3-8 keV luminosity is L < 7E31 erg/s, making EXO 1747-214 one of the faintest neutron star transients in quiescence. We compare this luminosity upper limit to the quiescent luminosities of 19 neutron star and 14 black hole systems and discuss the results in the context of the differences between neutron stars and black holes. Based on the theory of deep crustal heating by Brown and coworkers, the luminosity implies an outburst recurrence time of >1300 yr unless some form of enhanced cooling occurs within the neutron star. The position of the possible X-ray counterpart is consistent with three blended optical/IR sources with R-magnitudes between 19.4 and 19.8 and J-magnitudes between 17.2 and 17.6. One of these sources could be the quiescent optical/IR counterpart of EXO 1747-214.Comment: 7 pages, accepted by the Astrophysical Journa
    • 

    corecore