26 research outputs found

    Mechanical robustness of Pseudomonas aeruginosa biofilms

    Get PDF
    Biofilms grow on various surfaces and in many different environments, a phenomenon that constitutes major problems in industry and medicine. Despite their importance little is known about the viscoelastic properties of biofilms and how these depend on the chemical microenvironment. Here, we find that the mechanical properties of Pseudomonas aeruginosa (P.a.) biofilms are highly robust towards chemical perturbations. Specifically, we observe that P.a. biofilms are able to fully regain their initial stiffness after yielding is enforced, even in the presence of chemicals. Moreover, only trivalent ions and citric acid significantly affect the biofilm elasticity, the first of which also alters the texture of the material. Finally, our results indicate that biofilm mechanics and bacteria viability inside the biofilm are not necessarily linked which suggests that targeting bacteria alone might not be sufficient for biofilm removal strategies.National Institute of Mental Health (U.S.) (P50-GM068763)National Institute of Mental Health (U.S.) (P30-ES002109)German Academic Exchange Service (DAAD

    Potential Antibacterial Activity of Carvacrol-Loaded Poly(DL-lactide-co-glycolide) (PLGA) Nanoparticles against Microbial Biofilm

    Get PDF
    The ability to form biofilms contributes significantly to the pathogenesis of many microbial infections, including a variety of ocular diseases often associated with the biofilm formation on foreign materials. Carvacrol (Car.) is an important component of essential oils and recently has attracted much attention pursuant to its ability to promote microbial biofilm disruption. In the present study Car. has been encapsulated in poly(dl-lactide-co-glycolide (PLGA) nanocapsules in order to obtain a suitable drug delivery system that could represent a starting point for developing new therapeutic strategies against biofilm-associated infections, such as improving the drug effect by associating an antimicrobial agent with a biofilm viscoelasticity modifier

    Nanostructured diblock copolymer films with embedded magnetic nanoparticles

    No full text
    Nanostructured diblock copolymer films with embedded magnetic nanoparticles are prepared by solution casting. The diblock copolymer polystyrene-block-polymethylmethacrylate with a fully deuterated polystyrene block of a weight ratio of 0.22 is used as a structure-directing matrix. Maghemite nanoparticles (gamma-Fe2O3) are coated with polystyrene and thus have a selective affinity to the minority block of the diblock copolymer. The hybrid film morphology is investigated as a function of nanoparticle concentration. The surface structure is probed with atomic force microscopy and scanning electron microscopy. The inner film structure and the structure at the polymer-substrate interface are detected with grazing incidence small angle neutron scattering (GISANS). Irrespective of the nanoparticle concentration a well developed micro-phase separation structure is present. From the Bragg peaks observed in the GISANS data a linear nanoparticle concentration dependence of the inter-domain spacing of the micro-phase separation structure is determined. The superparamagnetic and blocking behavior can be explained with a generalized Stoner-Wohlfarth-Neel theory which includes either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants

    A model of fluid-biofilm interaction using a burger material law

    No full text
    A two-dimensional finite element model of the biofilm response to flow was developed. The numerical code sequentially coupled the fluid dynamics of turbulent, incompressible flow with the mechanical response of a single hemispherical biofilm cluster (approximately 100 µm) attached to the flow boundary. A non-linear Burger material law was used to represent the viscoelastic response of a representative microbial biofilm. This constitutive law was incorporated into the numerical model as a Prony series representation of the biofilm's relaxation modulus. Model simulations illuminated interesting details of this fluid-structure interaction. Simulations revealed that softer biofilms (characterized by lower elastic moduli) were highly susceptible to lift forces and consequently were subject to even greater drag forces found higher in the velocity field. A bimodal deformation path due to the two Burger relaxation times was also observed in several simulations. This suggested that interfacial biofilm may be most susceptible to hydrodynamically induced detachment during the initial relaxation time. This result may prove useful in developing removal strategies. Additionally, plots of lift versus drag suggested that the deformation paths taken by viscoelastic biofilms are largely insensitive to specific material coefficients. Softer biofilms merely seem to follow the same path (as a stiffer biofilm) at a faster rate. These relationships may be useful in estimating the hydrodynamic forces acting on an attached biofilm based on changes in scale and cataloged material properties
    corecore