11 research outputs found
Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980â2019)
We assess the 40-year climatological clear-sky global direct radiative effect (DRE) of five main aerosol types using the MERRA-2 reanalysis and a spectral radiative transfer model (FORTH). The study takes advantage of aerosol-speciated, spectrally and vertically resolved optical properties over the period 1980â2019, to accurately determine the aerosol DREs, emphasizing the attribution of the total DREs to each aerosol type. The results show that aerosols radiatively cool the Earthâs surface and heat its atmosphere by 7.56 and 2.35 Wmâ2, respectively, overall cooling the planet by 5.21 Wmâ2, partly counterbalancing the anthropogenic greenhouse global warming during 1980â2019. These DRE values differ significantly in terms of magnitude, and even sign, among the aerosol types (sulfate and black carbon aerosols cool and heat the planet by 1.88 and 0.19 Wmâ2, respectively), the hemispheres (larger NH than SH values), the surface cover type (larger land than ocean values) or the seasons (larger values in local spring and summer), while considerable inter-decadal changes are evident. These DRE differences are even larger by up to an order of magnitude on a regional scale, highlighting the important role of the aerosol direct radiative effect for local and global climate
Correction: Korras-Carraca et al. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980–2019). Atmosphere 2021, 12, 1254
There was an error in the original publication [...
Correction: Korras-Carraca et al. Global Clear-Sky Aerosol Speciated Direct Radiative Effects over 40 Years (1980â2019). <i>Atmosphere</i> 2021, <i>12</i>, 1254
There was an error in the original publication [...
A Global Climatology of Dust Aerosols Based on Satellite Data: Spatial, Seasonal and Inter-Annual Patterns over the Period 2005â2019
A satellite-based algorithm is developed and used to determine the presence of dust aerosols on a global scale. The algorithm uses as input aerosol optical properties from the MOderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Collection 6.1 and Ozone Monitoring Instrument (OMI)-Aura version v003 (OMAER-UV) datasets and identifies the existence of dust aerosols in the atmosphere by applying specific thresholds, which ensure the coarse size and the absorptivity of dust aerosols, on the input optical properties. The utilized aerosol optical properties are the multiwavelength aerosol optical depth (AOD), the Aerosol Absorption Index (AI) and the Ångström Exponent (a). The algorithm operates on a daily basis and at 1° × 1° latitude-longitude spatial resolution for the period 2005–2019 and computes the absolute and relative frequency of the occurrence of dust. The monthly and annual mean frequencies are calculated on a pixel level for each year of the study period, enabling the study of the seasonal as well as the inter-annual variation of dust aerosols’ occurrence all over the globe. Temporal averaging is also applied to the annual values in order to estimate the 15-year climatological mean values. Apart from temporal, a spatial averaging is also applied for the entire globe as well as for specific regions of interest, namely great global deserts and areas of desert dust export. According to the algorithm results, the highest frequencies of dust occurrence (up to 160 days/year) are primarily observed over the western part of North Africa (Sahara), and over the broader area of Bodélé, and secondarily over the Asian Taklamakan desert (140 days/year). For most of the study regions, the maximum frequencies appear in boreal spring and/or summer and the minimum ones in winter or autumn. A clear seasonality of global dust is revealed, with the lowest frequencies in November–December and the highest ones in June. Finally, an increasing trend of global dust frequency of occurrence from 2005 to 2019, equal to 56.2%, is also found. Such an increasing trend is observed over all study regions except for North Middle East, where a slight decreasing trend (−2.4%) is found
The regime of Aerosol Optical Depth and à ngström exponent over Central and South Asia
Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS - Aqua aerosol optical depth (AOD) at 550 nm and Ă
ngström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to -0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to -0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835
An Assessment of Global Dimming and Brightening during 1984â2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data
In this study, an assessment of the FORTH radiative transfer model (RTM) surface solar radiation (SSR) as well as its interdecadal changes (Î(SSR)), namely global dimming and brightening (GDB), is performed during the 35-year period of 1984â2018. Furthermore, a thorough evaluation of SSR and (Î(SSR)) is conducted against high-quality reference surface measurements from 1193 Global Energy Balance Archive (GEBA) and 66 Baseline Surface Radiation Network (BSRN) stations. For the first time, the FORTH-RTM Î(SSR) was evaluated over an extended period of 35 years and with a spatial resolution of 0.5° Ă 0.625°. The RTM uses state-of-the-art input products such as MERRA-2 and ISCCP-H and computes 35-year-long monthly SSR and GDB, which are compared to a comprehensive dataset of reference measurements from GEBA and BSRN. Overall, the FORTH-RTM deseasonalized SSR anomalies correlate satisfactorily with either GEBA (R equal to 0.72) or BSRN (R equal to 0.80). The percentage of agreement between the sign of computed GEBA and FORTH-RTM Î(SSR) is equal to 63.5% and the corresponding percentage for FORTH-RTM and BSRN is 54.5%. The obtained results indicate that a considerable and statistically significant increase in SSR (Brightening) took place over Europe, Mexico, Brazil, Argentina, Central and NW African areas, and some parts of the tropical oceans from the early 1980s to the late 2010s. On the other hand, during the same 35-year period, a strong and statistically significant decrease in SSR (Dimming) occurred over the western Tropical Pacific, India, Australia, Southern East China, Northern South America, and some parts of oceans. A statistically significant dimming at the 95% confidence level, equal to â0.063 Wmâ2 yearâ1 (or â2.22 Wmâ2) from 1984 to 2018 is found over the entire globe, which was more prevalent over oceanic than over continental regions (â0.07 Wmâ2 yearâ1 and â0.03 Wmâ2 yearâ1, statistically significant dimming at the 95% confidence level, respectively) in both hemispheres. Yet, this overall 35-year dimming arose from alternating decadal-scale changes, consisting of dimming during 1984â1989, brightening in the 1990s, turning into dimming over 2000â2009, and brightening during 2010â2018
Interdecadal Changes of the MERRA-2 Incoming Surface Solar Radiation (SSR) and Evaluation against GEBA & BSRN Stations
This study assesses and evaluates the 40-year (1980â2019) Modern-Era Retrospective Analysis for Research and Applications v.2 (MERRA-2) surface solar radiation (SSR) as well as its interdecadal changes (Î(SSR)) against high quality reference surface measurements from 1397 Global Energy Balance Archive (GEBA) and 73 Baseline Surface Radiation Network (BSRN) stations. The study is innovative since MERRA-2 (Î(SSR)) has never been evaluated in the past, while the MERRA-2 SSR fluxes themselves have not been evaluated in such large spatial scale, which is global here, and temporal basis, which counts 40-years. Other novelties of the study are the use of the highest quality BSRN stations, done for the first time in such an evaluation, as well as the use of a greater number of reference-GEBA stations than in other studies. Moreover, the assessment and evaluation in this study are largely based on SSR anomalies, while being done in depth, at spatial scales ranging from the local to global/hemispherical, and separately for land and ocean areas, and at temporal scales spanning intervals from decadal sub-periods to 40 years. Overall, the MERRA-2 deseasonalized SSR anomalies correlate well with either GEBA (R equal to 0.61) and BSRN (R equal to 0.62). The percentage of agreement between the sign of computed GEBA and MERRA-2 Î(SSR) is equal to 63.4% and the corresponding percentage for MERRA-2 and BSRN is 50%. According to MERRA-2, strong and statistically significant positive Î(SSR) (Brightening) is found over Europe, Central Africa, Mongolia, Mexico, Brazil, Argentina and some parts of the tropical oceans. In contrast, large and statistically significant negative Î(SSR) (Dimming) occurs over the western Tropical Warm Pool, India, Southern East China, Amazonia, stratocumulus covered areas and some parts of oceans. MERRA-2 yields a dimming equal to â0.158 ± 0.005 W/m2/year over the globe from 1980 to 2019. This 40-year dimming, which occurred in both hemispheres, more over ocean than continental areas (â0.195 ± 0.006 and â0.064 ± 0.006 W/m2/year, respectively), underwent decadal scale variations.ISSN:2076-341
On the Contribution of Aerosols and Clouds to Global Dimming and Brightening Using a Radiative Transfer Model, ISCCP-H Cloud and MERRA-2 Aerosol Optical Properties
The interdecadal changes of the incident solar radiation at the Earthâs surface (SSR) are mainly driven by changes in clouds and aerosols. In order to investigate their contribution to the SSR changes (global dimming and brightening or GDB), the FORTH radiative transfer model (RTM) is used to compute the SSR fluxes. The cloud input data were taken from satellite observations of ISCCP-H, while aerosols and meteorological data were taken from the MERRA-2 reanalysis dataset. The RTM operates on a monthly basis and in 0.5° Ă 0.625° latitude-longitude spatial resolution. The GDB was also computed keeping constant at their initial 1984 values, each input parameter that was examined, resulting in a GDB with the âfrozenâ parameter. The contribution of each parameter to the GDB is defined as the subtraction of the frozen GDB from the base-run GDB, and the positive/negative values of the contribution indicate that the interdecadal variability of the examined parameter increased/decreased the SSR. The aerosol optical depth (AOD) produced a dimming in India, Amazonia, and S. China, whereas it induced a brightening in Europe and Mexico. On the other hand, the total cloud cover (TCC) changes caused a dimming over the Arctic, Australia, and the South Ocean against a brightening in Europe, Mexico, the Middle East, and South America. The global mean contribution of changing AOD is 0.37 W/m2, and for TCC, it is 4.7 W/m2, indicating that globally, the counteraction of cloud cover to the overall global dimming is larger. Opposite contributions to GDB from AOD and TCC may occur over specific regions, highlighting the complexity of the causes of the GDB phenomenon
Three-Dimensional Distributions of the Direct Effect of anExtended and Intense Dust Aerosol Episode (16â18 June 2016) over the Mediterranean Basin on Regional Shortwave Radiation, Atmospheric Thermal Structure, and Dynamics
In the present study, we used the FORTH deterministic spectral Radiation Transfer Model (RTM) to estimate detailed three-dimensional distributions of the Direct Radiative Effects (DREs) and their consequent modification of the thermal structure of the regional atmosphere during an intense dust episode that took place from 16 to 18 June 2016 over the Mediterranean Basin (MB). The RTM operated on a 3-hourly temporal and 0.5 Ă 0.625° spatial resolution, using 3-D aerosol optical properties (i.e., aerosol optical depth, single scattering albedo, and asymmetry parameter) and other surface and atmospheric properties from the MERRA-2 reanalysis and cloud properties (i.e., cloud amount, cloud optical depth, and cloud top height) from the ISCCP-H dataset. The model ran with and without dust aerosols, yielding the upwelling and downwelling solar fluxes at the top of the atmosphere, in the atmosphere, and at the Earthâs surface as well as at 50 levels in the atmosphere. The dust direct radiative effect (DDRE) was estimated as the difference between the two (one taking into account all aerosol types and one taking into account all except for dust aerosols) flux outputs. The atmospheric heating rates and subsequent convection induced by dust radiative absorption were calculated at 50 levels to determine how the DDRE affects the thermal structure and dynamics of the atmosphere. The results showed that such a great and intense dust transport event significantly reduces the net surface solar radiation over the MB (by up to 62 W/m2 on a daily mean basis, and up to 200 W/m2 on an hourly basis, at 12:00 UTC) while increasing the atmospheric solar absorption (by up to 72 W/m2 daily and 187 W/m2 hourly, at 12:00 UTC). At the top of the atmosphere, both heating (over desert areas) and cooling (over oceanic and other continental areas) are observed due to the significantly different surface albedos. Transported dust causes considerable heating of the regionâs atmosphere, which becomes maximum at altitudes where the dust loadings are highest (0.14 K/3 h on 17 June 2016, 12:00 UTC, at 3â5 km above sea level). The dust solar absorption and heating induce a buoyancy as strong as 0.014 m/s2, resulting in considerable changes in vertical air motions and possibly contributing to the formation of middle- and high-level clouds over the Mediterranean Basin
Global Dimming and Brightening Features during the First Decade of the 21st Century
International audienceDownward surface solar radiation (SSR) trends for the first decade of the 2000s were computed using a radiative transfer model and satellite and reanalysis input data and were validated against measurements from the reference global station networks Global Energy Balance Archive (GEBA) and Baseline Surface Radiation Network (BSRN). Under all-sky conditions, in spite of a somewhat patchy structure of global dimming and brightening (GDB), an overall dimming was found that is weaker in the Northern than in the Southern Hemisphere (â2.2 and â3.1 W m â2 , respectively, over the 2001-2009 period). Dimming is observed over both land and ocean in the two hemispheres, but it is more remarkable over land areas of the Southern Hemisphere. The post-2000 dimming is found to have been primarily caused by clouds, and secondarily by aerosols, with total cloud cover contributing â1.4 W m â2 and aerosol optical thickness â0.7 W m â2 to the global average dimming of â2.65 W m â2. The evaluation of the model-computed GDB against BSRN and GEBA measurements indicates a good agreement, with the same trends for 65% and 64% of the examined stations, respectively. The obtained model results are in line with other studies for specific world regions and confirm the occurrence of an overall solar dimming over the globe during the first decade of 21st century. This post-2000 dimming has succeeded the global brightening observed in the 1990s and points to possible impacts on the ongoing global warming and climate change