987 research outputs found

    DeepTx: Deep Learning Beamforming with Channel Prediction

    Full text link
    Machine learning algorithms have recently been considered for many tasks in the field of wireless communications. Previously, we have proposed the use of a deep fully convolutional neural network (CNN) for receiver processing and shown it to provide considerable performance gains. In this study, we focus on machine learning algorithms for the transmitter. In particular, we consider beamforming and propose a CNN which, for a given uplink channel estimate as input, outputs downlink channel information to be used for beamforming. The CNN is trained in a supervised manner considering both uplink and downlink transmissions with a loss function that is based on UE receiver performance. The main task of the neural network is to predict the channel evolution between uplink and downlink slots, but it can also learn to handle inefficiencies and errors in the whole chain, including the actual beamforming phase. The provided numerical experiments demonstrate the improved beamforming performance.Comment: 27 pages, this work has been submitted to the IEEE for possible publication; v2: Fixed typo in author name, v3: a revisio

    Mixing Time Scales in a Supernova-Driven Interstellar Medium

    Get PDF
    We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time constant depends on the inverse square root of the supernova rate. One major reason for these results is that even with numerical diffusion exceeding physical values, gas does not mix quickly between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots, accepted for publication at Ap

    Kinematic frames and "active longitudes": does the Sun have a face?

    Get PDF
    It has recently been claimed that analysis of Greenwich sunspot data over 120 years reveals that sunspot activity clusters around two longitudes separated by 180 degrees (``active longitudes'') with clearly defined differential rotation during activity cycles.In the present work we extend this critical examination of methodology to the actual Greenwich sunspot data and also consider newly proposed methods of analysis claiming to confirm the original identification of active longitudes. Our analysis revealed that values obtained for the parameters of differential rotation are not stable across different methods of analysis proposed to track persistent active longitudes. Also, despite a very thorough search in parameter space, we were unable to reproduce results claiming to reveal the century-persistent active longitudes. We can therefore say that strong and well substantiated evidence for an essential and century-scale persistent nonaxisymmetry in the sunspot distribution does not exist.Comment: 14 pages, 1 table, 21 figures, accepted in A&

    Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    Full text link
    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure

    Effects of Rotation and Input Energy Flux on Convective Overshooting

    Get PDF
    We study convective overshooting by means of local 3D convection calculations. Using a mixing length model of the solar convection zone (CZ) as a guide, we determine the Coriolis number (Co), which is the inverse of the Rossby number, to be of the order of ten or larger at the base of the solar CZ. Therefore we perform convection calculations in the range Co = 0...10 and interpret the value of Co realised in the calculation to represent a depth in the solar CZ. In order to study the dependence on rotation, we compute the mixing length parameters alpha_T and alpha_u relating the temperature and velocity fluctuations, respectively, to the mean thermal stratification. We find that the mixing length parameters for the rapid rotation case, corresponding to the base of the solar CZ, are 3-5 times smaller than in the nonrotating case. Introducing such depth-dependent alpha into a solar structure model employing a non-local mixing length formalism results in overshooting which is approximately proportional to alpha at the base of the CZ. Although overshooting is reduced due to the reduced alpha, a discrepancy with helioseismology remains due to the steep transition to the radiative temperature gradient. In comparison to the mixing length models the transition at the base of the CZ is much gentler in the 3D models. It was suggested recently (Rempel 2004) that this discrepancy is due to the significantly larger (up to seven orders of magnitude) input energy flux in the 3D models in comparison to the Sun and solar models, and that the 3D calculations should be able to approach the mixing length regime if the input energy flux is decreased by a moderate amount. We present results from local convection calculations which support this conjecture.Comment: 6 pages, 3 figures, to appear in Convection in Astrophysics, Proc. IAUS 239, edited by F. Kupka, I.W. Roxburgh, K.L. Cha

    Slight respiratory irritation but not inflammation in mice exposed to (1-->3)-beta-D-glucan aerosols.

    Get PDF
    Airway irritation effects after single and repeated inhalation exposures to aerosols of beta-glucan (grifolan) were investigated in mice. In addition, the effects on serum total immunoglobulin E (IgE) production and histopathological inflammation in the respiratory tract were studied. The beta-glucan aerosols provoked slight sensory irritation in the airways, but the response was not concentration dependent at the levels studied. Slight pulmonary irritation was observed after repeated exposures. No effect was found on the serum total IgE levels, and no signs of inflammation were seen in the airways 6 h after the final exposure. The results suggest that, irrespective of previous fungal sensitization of the animals, inhaled beta-glucan may cause symptoms of respiratory tract irritation but without apparent inflammation. Respiratory tract irritation reported after inhalation of fungi may not be entirely attributed to beta-glucan

    Local models of stellar convection II: Rotation dependence of the mixing length relations

    Full text link
    We study the mixing length concept in comparison to three-dimensional numerical calculations of convection with rotation. In a limited range, the velocity and temperature fluctuations are linearly proportional to the superadiabaticity, as predicted by the mixing length concept and in accordance with published results. The effects of rotation are investigated by varying the Coriolis number, Co = 2 Omega tau, from zero to roughly ten, and by calculating models at different latitudes. We find that \alpha decreases monotonically as a function of the Coriolis number. This can be explained by the decreased spatial scale of convection and the diminished efficiency of the convective energy transport, the latter of which leads to a large increase of the superadibaticity, \delta = \nabla - \nabla_ad as function of Co. Applying a decreased mixing length parameter in a solar model yields very small differences in comparison to the standard model within the convection zone. The main difference is the reduction of the overshooting depth, and thus the depth of the convection zone, when a non-local version of the mixing length concept is used. Reduction of \alpha by a factor of roughly 2.5 is sufficient to reconcile the difference between the model and helioseismic results. The numerical results indicate reduction of \alpha by this order of magnitude.Comment: Final published version, 8 pages, 9 figure
    corecore