9 research outputs found

    Science with the Einstein Telescope: a comparison of different designs

    No full text
    The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a ‘xylophone’ configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple ‘metrics’ that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    No full text
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    No full text
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    Full text link
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    Get PDF
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

    Get PDF
    The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: 1) operating with 1550 nm laser light and at a temperature of 18 K and 2) operating at 2090 nm wavelength and a temperature of 123 K

    Safety and tolerability of subcutaneous trastuzumab for the adjuvant treatment of human epidermal growth factor receptor 2-positive early breast cancer: SafeHer phase III study's primary analysis of 2573 patients

    No full text
    Aim To assess the safety and tolerability of adjuvant subcutaneous trastuzumab (Herceptin® SC, H SC), delivered from an H SC Vial via hand-held syringe (Cohort A) or single-use injection device (Cohort B), with or without chemotherapy, for human epidermal growth factor receptor 2 (HER2)-positive stage I to IIIC early breast cancer (EBC) in the phase III SafeHer study (NCT01566721). Methods Patients received 600 mg fixed-dose H SC every 3 weeks for 18 cycles. The chemotherapy partner was at the investigators' discretion (H SC monotherapy was limited to ≤10% of the population). Data from the first H SC dose until 28 days (plus a 5-day window) after the last dose are presented. Results are descriptive. Results In the overall population, 2282/2573 patients (88.7%) experienced adverse events (AEs). Of the above, 128 (5.0%) patients experienced AEs leading to study drug discontinuation; 596 (23.2%) experienced grade ≥ 3 AEs and 326 (12.7%) experienced serious AEs. Grade ≥ 3 cardiac disorders were reported in 24 patients (0.9%), including congestive heart failure in eight (0.3%). As expected, the AE rates varied according to the timing of chemotherapy in both cohorts, with higher rates in concurrent versus sequential chemotherapy subgroups. In the concurrent chemotherapy subgroup, AEs were more common during the actual period of concurrent chemotherapy compared with the period when patients did not receive concurrent chemotherapy. Conclusion SafeHer confirms the safety and tolerability of the H SC 600 mg fixed dose for 1 year (every 3 weeks for 18 cycles) as adjuvant therapy with concurrent or sequential chemotherapy for HER2-positive EBC. These primary analysis results are consistent with the known safety profile for intravenous H and H SC
    corecore