12 research outputs found

    New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology

    Get PDF
    Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care

    Reinforcement learning in ophthalmology: potential applications and challenges to implementation

    Get PDF
    Reinforcement learning is a subtype of machine learning in which a virtual agent, functioning within a set of predefined rules, aims to maximise a specified outcome or reward. This agent can consider multiple variables and many parallel actions at once to optimise its reward, thereby solving complex, sequential problems. Clinical decision making requires physicians to optimise patient outcomes within a set practice framework and, thus, presents considerable opportunity for the implementation of reinforcement learning-driven solutions. We provide an overview of reinforcement learning, and focus on potential applications within ophthalmology. We also explore the challenges associated with development and implementation of reinforcement learning solutions and discuss possible approaches to address them

    Democratizing Artificial Intelligence Imaging Analysis With Automated Machine Learning: Tutorial

    Get PDF
    Deep learning–based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling “hands-on” education. AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant considerations

    Evaluating an automated machine learning model that predicts visual acuity outcomes in patients with neovascular age-related macular degeneration

    Get PDF
    PURPOSE: Neovascular age-related macular degeneration (nAMD) is a major global cause of blindness. Whilst anti-vascular endothelial growth factor (anti-VEGF) treatment is effective, response varies considerably between individuals. Thus, patients face substantial uncertainty regarding their future ability to perform daily tasks. In this study, we evaluate the performance of an automated machine learning (AutoML) model which predicts visual acuity (VA) outcomes in patients receiving treatment for nAMD, in comparison to a manually coded model built using the same dataset. Furthermore, we evaluate model performance across ethnic groups and analyse how the models reach their predictions. METHODS: Binary classification models were trained to predict whether patients' VA would be 'Above' or 'Below' a score of 70 one year after initiating treatment, measured using the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. The AutoML model was built using the Google Cloud Platform, whilst the bespoke model was trained using an XGBoost framework. Models were compared and analysed using the What-if Tool (WIT), a novel model-agnostic interpretability tool. RESULTS: Our study included 1631 eyes from patients attending Moorfields Eye Hospital. The AutoML model (area under the curve [AUC], 0.849) achieved a highly similar performance to the XGBoost model (AUC, 0.847). Using the WIT, we found that the models over-predicted negative outcomes in Asian patients and performed worse in those with an ethnic category of Other. Baseline VA, age and ethnicity were the most important determinants of model predictions. Partial dependence plot analysis revealed a sigmoidal relationship between baseline VA and the probability of an outcome of 'Above'. CONCLUSION: We have described and validated an AutoML-WIT pipeline which enables clinicians with minimal coding skills to match the performance of a state-of-the-art algorithm and obtain explainable predictions

    Clinician-Driven AI: Code-Free Self-Training on Public Data for Diabetic Retinopathy Referral

    Get PDF
    Importance: Democratizing artificial intelligence (AI) enables model development by clinicians with a lack of coding expertise, powerful computing resources, and large, well-labeled data sets. // Objective: To determine whether resource-constrained clinicians can use self-training via automated machine learning (ML) and public data sets to design high-performing diabetic retinopathy classification models. // Design, Setting, and Participants: This diagnostic quality improvement study was conducted from January 1, 2021, to December 31, 2021. A self-training method without coding was used on 2 public data sets with retinal images from patients in France (Messidor-2 [n = 1748]) and the UK and US (EyePACS [n = 58 689]) and externally validated on 1 data set with retinal images from patients of a private Egyptian medical retina clinic (Egypt [n = 210]). An AI model was trained to classify referable diabetic retinopathy as an exemplar use case. Messidor-2 images were assigned adjudicated labels available on Kaggle; 4 images were deemed ungradable and excluded, leaving 1744 images. A total of 300 images randomly selected from the EyePACS data set were independently relabeled by 3 blinded retina specialists using the International Classification of Diabetic Retinopathy protocol for diabetic retinopathy grade and diabetic macular edema presence; 19 images were deemed ungradable, leaving 281 images. Data analysis was performed from February 1 to February 28, 2021. // Exposures: Using public data sets, a teacher model was trained with labeled images using supervised learning. Next, the resulting predictions, termed pseudolabels, were used on an unlabeled public data set. Finally, a student model was trained with the existing labeled images and the additional pseudolabeled images. Main Outcomes and Measures: The analyzed metrics for the models included the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, and F1 score. The Fisher exact test was performed, and 2-tailed P values were calculated for failure case analysis. // Results: For the internal validation data sets, AUROC values for performance ranged from 0.886 to 0.939 for the teacher model and from 0.916 to 0.951 for the student model. For external validation of automated ML model performance, AUROC values and accuracy were 0.964 and 93.3% for the teacher model, 0.950 and 96.7% for the student model, and 0.890 and 94.3% for the manually coded bespoke model, respectively. // Conclusions and Relevance: These findings suggest that self-training using automated ML is an effective method to increase both model performance and generalizability while decreasing the need for costly expert labeling. This approach advances the democratization of AI by enabling clinicians without coding expertise or access to large, well-labeled private data sets to develop their own AI models

    Retinal Optical Coherence Tomography Features Associated With Incident and Prevalent Parkinson Disease

    Get PDF
    Background and objectives: Cadaveric studies have shown disease-related neurodegeneration and other morphological abnormalities in the retina of individuals with Parkinson disease (PD), however it remains unclear whether this can be reliably detected with in vivo imaging. We investigated inner retinal anatomy, measured using optical coherence tomography (OCT), in prevalent PD and subsequently assessed the association of these markers with the development of PD using a prospective research cohort.// Methods: This cross-sectional analysis used data from two studies. For the detection of retinal markers in prevalent PD, we used data from AlzEye, a retrospective cohort of 154,830 patients aged 40 years and over attending secondary care ophthalmic hospitals in London, UK between 2008 and 2018. For the evaluation of retinal markers in incident PD, we used data from UK Biobank, a prospective population-based cohort where 67,311 volunteers aged 40-69 years were recruited between 2006 and 2010 and underwent retinal imaging. Macular retinal nerve fibre layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), and inner nuclear layer (INL) thicknesses were extracted from fovea--centred OCT. Linear mixed effects models were fitted to examine the association between prevalent PD and retinal thicknesses. Hazard ratios for the association between time to PD diagnosis and retinal thicknesses were estimated using frailty models.// Results: Within the AlzEye cohort, there were 700 individuals with prevalent PD and 105,770 controls (mean age 65.5 ± 13.5 years, 51.7% female). Individuals with prevalent PD had thinner GCIPL (-2.12 μm, 95% confidence interval: -3.17, -1.07, p = 8.2 × 10⁻⁵) and INL (-0.99 μm, 95% confidence interval: -1.52, -0.47, p = 2.1 × 10⁻⁴). The UK Biobank included 50,405 participants (mean age 56.1 ± 8.2 years, 54.7% female), of whom 53 developed PD at a mean of 2653 ± 851 days. Thinner GCIPL (hazard ratio: 0.62 per standard deviation increase, 95% confidence interval: 0.46, 0.84, p=0.002) and thinner INL (hazard ratio: 0.70, 95% confidence interval: 0.51, 0.96, p=0.026) were also associated with incident PD.// Discussion: Individuals with PD have reduced thickness of the INL and GCIPL of the retina. Involvement of these layers several years before clinical presentation highlight a potential role for retinal imaging for at-risk stratification of PD

    Retinal optical coherence tomography features associated with incident and prevalent parkinson disease

    Get PDF
    Background and Objectives: Cadaveric studies have shown disease-related neurodegeneration and other morphological abnormalities in the retina of individuals with Parkinson disease (PD); however, it remains unclear whether this can be reliably detected with in vivo imaging. We investigated inner retinal anatomy, measured using optical coherence tomography (OCT), in prevalent PD and subsequently assessed the association of these markers with the development of PD using a prospective research cohort. Methods: This cross-sectional analysis used data from 2 studies. For the detection of retinal markers in prevalent PD, we used data from AlzEye, a retrospective cohort of 154,830 patients aged 40 years and older attending secondary care ophthalmic hospitals in London, United Kingdom, between 2008 and 2018. For the evaluation of retinal markers in incident PD, we used data from UK Biobank, a prospective population-based cohort where 67,311 volunteers aged 40–69 years were recruited between 2006 and 2010 and underwent retinal imaging. Macular retinal nerve fiber layer (mRNFL), ganglion cell–inner plexiform layer (GCIPL), and inner nuclear layer (INL) thicknesses were extracted from fovea-centered OCT. Linear mixed-effects models were fitted to examine the association between prevalent PD and retinal thicknesses. Hazard ratios for the association between time to PD diagnosis and retinal thicknesses were estimated using frailty models. Results: Within the AlzEye cohort, there were 700 individuals with prevalent PD and 105,770 controls (mean age 65.5 ± 13.5 years, 51.7% female). Individuals with prevalent PD had thinner GCIPL (−2.12 μm, 95% CI −3.17 to −1.07, p = 8.2 × 10−5) and INL (−0.99 μm, 95% CI −1.52 to −0.47, p = 2.1 × 10−4). The UK Biobank included 50,405 participants (mean age 56.1 ± 8.2 years, 54.7% female), of whom 53 developed PD at a mean of 2,653 ± 851 days. Thinner GCIPL (hazard ratio [HR] 0.62 per SD increase, 95% CI 0.46–0.84, p = 0.002) and thinner INL (HR 0.70, 95% CI 0.51–0.96, p = 0.026) were also associated with incident PD. Discussion: Individuals with PD have reduced thickness of the INL and GCIPL of the retina. Involvement of these layers several years before clinical presentation highlight a potential role for retinal imaging for at-risk stratification of PD

    SURGICAL MANAGEMENT OF TRACTIONAL RETINOSCHISIS ASSOCIATED WITH VITREOUS HEMORRHAGE IN RETINOPATHY OF PREMATURITY.

    No full text
    PURPOSE: The tractional retinoschisis is a poorly understood, rare, and likely underappreciated entity in retinopathy of prematurity. The purpose of this article is to describe clinical findings and surgical management of tractional retinoschisis in retinopathy of prematurity, masquerading as Stage 4 retinopathy of prematurity retinal detachment. METHODS: A retrospective review of a single case with literature review and case discussion. RESULTS: In this report, we describe a child with retinopathy of prematurity and tractional schisis, who initially presented with vitreous hemorrhage and was effectively managed by vitrectomy and inner wall retinectomy. At 5 months after vitrectomy, the child demonstrated complete collapse of the retinoschisis with intact posterior pole and brisk light perception. CONCLUSION: Vitrectomy with or without inner wall retinectomy is effective in the management of tractional retinoschisis

    Predicting sex from retinal fundus photographs using automated deep learning.

    Get PDF
    Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. Herein we present the development of a deep learning model by clinicians without coding, which predicts reported sex from retinal fundus photographs. A model was trained on 84,743 retinal fundus photos from the UK Biobank dataset. External validation was performed on 252 fundus photos from a tertiary ophthalmic referral center. For internal validation, the area under the receiver operating characteristic curve (AUROC) of the code free deep learning (CFDL) model was 0.93. Sensitivity, specificity, positive predictive value (PPV) and accuracy (ACC) were 88.8%, 83.6%, 87.3% and 86.5%, and for external validation were 83.9%, 72.2%, 78.2% and 78.6% respectively. Clinicians are currently unaware of distinct retinal feature variations between males and females, highlighting the importance of model explainability for this task. The model performed significantly worse when foveal pathology was present in the external validation dataset, ACC: 69.4%, compared to 85.4% in healthy eyes, suggesting the fovea is a salient region for model performance OR (95% CI): 0.36 (0.19, 0.70) p = 0.0022. Automated machine learning (AutoML) may enable clinician-driven automated discovery of novel insights and disease biomarkers
    corecore