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Abstract
Purpose  Neovascular age-related macular degeneration (nAMD) is a major global cause of blindness. Whilst anti-
vascular endothelial growth factor (anti-VEGF) treatment is effective, response varies considerably between indi-
viduals. Thus, patients face substantial uncertainty regarding their future ability to perform daily tasks. In this study, 
we evaluate the performance of an automated machine learning (AutoML) model which predicts visual acuity (VA) 
outcomes in patients receiving treatment for nAMD, in comparison to a manually coded model built using the same 
dataset. Furthermore, we evaluate model performance across ethnic groups and analyse how the models reach their 
predictions.
Methods  Binary classification models were trained to predict whether patients’ VA would be ‘Above’ or ‘Below’ a score 
of 70 one year after initiating treatment, measured using the Early Treatment Diabetic Retinopathy Study (ETDRS) 
chart. The AutoML model was built using the Google Cloud Platform, whilst the bespoke model was trained using 
an XGBoost framework. Models were compared and analysed using the What-if Tool (WIT), a novel model-agnostic 
interpretability tool.
Results  Our study included 1631 eyes from patients attending Moorfields Eye Hospital. The AutoML model (area under the 
curve [AUC], 0.849) achieved a highly similar performance to the XGBoost model (AUC, 0.847). Using the WIT, we found 
that the models over-predicted negative outcomes in Asian patients and performed worse in those with an ethnic category of 
Other. Baseline VA, age and ethnicity were the most important determinants of model predictions. Partial dependence plot 
analysis revealed a sigmoidal relationship between baseline VA and the probability of an outcome of ‘Above’.
Conclusion  We have described and validated an AutoML-WIT pipeline which enables clinicians with minimal coding skills 
to match the performance of a state-of-the-art algorithm and obtain explainable predictions.

Keywords  Automated machine learning · Neovascular age-related macular degeneration · Artificial intelligence · Anti-
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Introduction

Age-related macular degeneration (AMD) affects an 
estimated 200 million people worldwide and is the most 
common cause of blindness in the developed world [1]. 
Up to 90% of cases involving blindness are attributed 
to neovascular AMD (nAMD), where new growth of 
structurally fragile blood vessels causes fluid to leak 
and damage the macula [2]. This leads to rapid loss of 
central vision that resulting in physical disability and 
significant psychological stress, with many patients 
fearing loss of independence [3]. Whilst anti-vascular 
endothelial growth factor (anti-VEGF) injections are an 
effective treatment [4, 5], response varies considerably 
between patients, and real-world treatment outcomes 
often do not match clinical trials [6]. Therefore, the 
ability to accurately predict how an individual’s visual 
acuity (VA) will change in response to treatment may be 
highly desirable.

A significant amount of real-world structured data has 
now been collected from patients receiving anti-VEGF treat-
ment for nAMD. This includes VA scores at each appoint-
ment and measurements taken from optical coherence 
tomography (OCT) scans, a non-invasive imaging modality 
routinely used to determine treatment indication and thera-
peutic response in AMD. In 2018, Rohm et al. used this data 
to build a machine learning (ML) model that predicts VA 
12 months into the future [7]. Notably, this relied on input 
data collected after an initial loading of three anti-VEGF 
injections, rather than at baseline (i.e., immediately prior to 
initiation of treatment). Consequently, this model is unable 
to alleviate the uncertainty and anxiety that patients face 
when starting treatment [8]. More recently, a classification 
algorithm which predicts VA outcomes after a year of treat-
ment achieved an area under the receiver operating charac-
teristic curve (AUROC) of 0.78 [9]. Whilst this study did use 
baseline data, the focus was on assessing the predictive util-
ity of quantitative OCT biomarkers. As such, demographic 

information was omitted despite age being a known predictor 
of VA outcomes [10].

Thus far, these attempts have adopted conventional 
ML methods. This involves investing significant time 
and skill into model architecture selection, data pre-
processing and hyperparameter tuning. In contrast, auto-
mated machine learning (AutoML) techniques seek to 
accomplish these steps without user input. Recent studies 
assessing the feasibility of AutoML in healthcare have 
found promising results in comparison to bespoke models 
[11–14]. This represents an opportunity to enable clini-
cians with no computational background to leverage the 
power of ML.

In this retrospective cohort study, we aim to evaluate 
whether an AutoML model, built using the Google Cloud 
AutoML Tables platform, can predict VA outcomes 
in patients with nAMD. Specifically, we use baseline 
data to predict whether patients’ vision will be above 
or below the legal driving standard after one year of 
anti-VEGF treatment. Current research into AutoML has 
focused on image classification tasks, with few studies 
analysing how the technology performs relative to con-
ventional ML when using structured data. Therefore, we 
evaluate the performance of our AutoML model against 
a bespoke model, designed in the traditional manner by 
computer scientists, that was trained and tuned using 
the same dataset.

Whilst AutoML may help to democratise artificial intel-
ligence (AI), lack of interpretability into how models reach 
their decisions still represents a barrier to extensive model 
interrogation and buy-in [15]. Examples of algorithms 
which harbour entrenched racial biases have also been 
reported [16, 17]. Therefore, we further aim to evaluate 
the performance of our models across ethnic groups and 
analyse how they arrive at their decisions, both at the level 
of the individual patient and more broadly. To this end, we 
utilise the What-if Tool (WIT), a novel open-source AI 
interpretability tool [18].

Key messages

Automated machine learning (AutoML) models which require zero or minimal coding have shown promise in 
recent healthcare studies, mostly involving image-classification tasks. 
In this study, we built an AutoML model using a structured OCT data set to predict visual acuity outcomes in 
patients receiving treatment for neovascular age-related macular degeneration. The AutoML model performed 
similarly to a manually coded model, with areas under the curve of 0.849 and 0.847 respectively.
We demonstrated the interpretability of our models’ predictions using the What-If Tool (WIT), both at the level of 
an individual patient and across the test dataset. 
The AutoML-WIT pipeline described here can be used by other clinical researchers to build high performing, 
interpretable models with minimal coding. 
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Methods

The overall project workflow is described in Fig. 1. All 
programming (see the ‘Code availability’ section) was car-
ried out using Python 3.7.9. We refer to this code in the 
text as Script 1 and Script 2.

Study cohort

This study included data from patients receiving anti-
VEGF (af libercept or ranibizumab) treatment for 
nAMD at Moorfields Eye Hospital (MEH) between 
June 2012 and June 2017. Patients at MEH receive a 
standardised treatment consisting of an initial loading 
phase of three injections, four weeks apart, followed 
by a treat-and-extend (T&E) regimen. Although this 
approach is taken in the vast majority of patients, there 
is f lexibility for individual clinicians to personalise 
this treatment, for example by adopting a pro re nata 
(PRN) approach.

Details of 169,703 appointments attended by 3392 
patients were collated from MEH electronic health 
records. Patients were excluded if they had missing VA 
measurements at baseline or one year, no OCT scan at 
baseline or if they had previously received treatment for 
nAMD (Supplementary Fig. 1). After applying exclusion 
criteria, our final study cohort comprised of 1631 eyes 
from 1547 patients.

Dataset preparation

For each eye, we recorded baseline VA, OCT-derived 
volume measurements and the patient’s age, gender and 
ethnicity.

Baseline VA was measured using the method described 
in the landmark Early Treatment Diabetic Retinopathy 
Study (ETDRS) [19]. The maximum VA score using this 
method is 100 (equivalent to a Snellen test score of 20/10), 
the requirement for recreational driving in the UK is 70 
(20/40) and a score of 35 (20/200) or below is classified 
as legal blindness.

Fig. 1   Summary of project 
workflow
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For each eye, volume measurements of retinal compart-
ments were extracted from baseline OCT scans by a deep 
learning segmentation algorithm (Fig. 2), as previously 
described [20].

Previous literature has identified the OCT-derived meas-
urements that are important in determining VA outcomes in 
AMD patients [21–24]. Based on these studies, we selected 
the following features from those provided by the segmenta-
tion model: intraretinal fluid (IRF), subretinal fluid (SRF), 
subretinal hyperreflective material (SHRM), hyperreflec-
tive foci (HRF), retinal pigment epithelium (RPE) and pig-
ment epithelium detachment (PED). PED was calculated 
by summing fibrovascular PED, drusenoid PED and serous 
PED. Feature descriptions are available in Supplementary 
Table 1.

To create the outcome labels for our binary classifica-
tion task, we utilised patients’ VA scores at 12 months and 
assigned a label of ‘Above’ to patients with a VA ≥ 70, and 
a label of ‘Below’ for the remaining patients with VA < 70. 
Whilst this threshold score of 70 corresponds to the legal 
standard for driving, our aim was not to develop an algorithm 
that predicts who will be capable of driving in 1 year (since 
for recreational driving it is sufficient to meet the standard 
using both eyes) but to use a threshold that intuitively relates 
to a daily task and is consistent with previous literature [9, 
25].

Following feature selection and labelling, we carried out 
a random 85:15 stratified train-test split (Supplementary 
Table 2). The test data was held back for evaluation using 
the WIT, whilst the remaining data was used for model train-
ing and validation.

AutoML Tables is an automated machine learning tool 
available on the Google Cloud Platform (GCP) which 
accepts structured data as input and automatically trains 
predictive models [26]. Whilst alternative platforms exist, 
this study focuses on AutoML Tables due to its free trial 
option, built-in interpretability features and higher reported 
performance when benchmarked against other platforms in 

Kaggle competitions [27]. We have created a diagram sum-
marising our AutoML Tables workflow, as well as the steps 
automated by the platform (Supplementary Fig. 2). Final 
hyperparameter settings for our trained model are available 
in Supplementary Table 3.

Bespoke model

We explored various potential algorithms including logis-
tic regression, K-nearest neighbours, EXtreme Gradient 
Boosting (XGBoost) and Keras Deep Neural Networks. 
Initial evaluation of these options on our training and vali-
dation data yielded XGBoost as the optimal algorithm for 
our bespoke model.

XGBoost is considered a state-of-the-art algorithm for clas-
sification tasks using structured data [28] and is frequently 
used in healthcare research for predictive modelling [29–31]. 
XGBoost works by building an ensemble of decision trees, 
each of which has a set of criteria that it ‘judges’ the input data 
by. For example, the first decision tree may include a criterion 
of ‘Age > 67’. A score is then assigned based on whether the 
data fits this criterion or not. Evidently, making a prediction 
based on a single criterion is a crude method, and so in model 
training, subsequent trees learn their own criteria which are 
finetuned to correct the residual error of the prior ensemble 
[32].

Following algorithm selection, we carried out a grid search 
of 6318 different hyperparameter combinations using stratified 
cross-validation with ten splits (Script 2). This yielded the final 
hyperparameter settings used to train our model (Supplemen-
tary Table 4), ready to be evaluated on the un-seen test set.

Feature importance

The AutoML Tables platform returns feature importance 
based on Shapley values, which it approximates using the 
sampled Shapley method [33]. Shapley values are com-
monly utilised in cooperative game theory and are adopted 

Fig.2   Segmentation of retinal 
compartments using deep learn-
ing algorithm. Exemplar OCT 
scan and segmentation map 
for a patient with neovascular 
age-related macular degenera-
tion. The colour key shows the 
features quantified by the seg-
mentation algorithm. Volumes 
outputted were scaled from 
voxels (2.60 × 11.72 × 47.24 �m 
cuboids) to cubic millimetres 
before their use as input features 
in this study. PED = pigment 
epithelium detachment



Graefe's Archive for Clinical and Experimental Ophthalmology	

1 3

in ML to characterise the average marginal contribution of 
each feature to the model’s overall prediction. This provides 
a robust route to evaluating which features are most impor-
tant for the model’s decisions in a manner consistent with 
human intuition [34]. We also calculated feature importance 
for our XGBoost model (Script 3). This was implemented 
using the TreeExplainer method from the SHapley Additive 
exPlanations (SHAP) Python package [35]. Feature impor-
tance values were normalised to sum to 1 for each model.

What‑if Tool

The WIT is an open-source, model-agnostic AI interpretabil-
ity tool available to use as a Jupyter notebook extension [18]. 
It enables performance metrics to be analysed across different 
patient subgroups, giving insight into model fairness and bias. 
Furthermore, it allows the user to view how model predictions 
change when input features are hypothetically varied. This may 
be at the level of an individual patient or across the entire test set.

To the best of our knowledge, we are the first to analyse an 
AutoML model using the WIT (Script 4). Whilst the graphi-
cal user interface is intuitive to use, the initial set-up process 
requires some Python programming and use of the command-
line interface. We have created a video (see Supplementary 
Information) to outline the process and enable those from 
a non-computational background to reproduce this method.

Results

Study cohort

Our cohort (summarised in Table 1) consisted of 1631 eyes 
from 1547 patients. The median age was 80 (IQR 73–85) 

with a baseline VA of 58 (IQR 46–68). Females accounted 
for 60% of the cohort. Ethnicities were 53% White, 11% 
Asian, 2% Black, 23% Other and 11% Unknown. These fig-
ures are in line with the epidemiology of AMD [36]. Eyes 
with an outcome label of ‘Above’ were on average younger 
(78 vs. 81 years, p < 0.01) with a higher baseline VA (67 vs. 
50, p < 0.01) and lower volumes of IRF, SHRM and PED at 
baseline (all with p < 0.01).

Overall model performance

The test set AUROC was 0.849 for the AutoML Tables 
model and 0.847 for the XGBoost model (Fig. 3a). Using 
DeLong’s test (Script 5), these AUROC were not found to be 
significantly different (p = 0.71). We also report the confu-
sion matrices for both models (Fig. 3b) and further perfor-
mance metrics (Table 2), highlighting the similarity between 
the two models.

Analysing model performance by ethnic group

Using the WIT, we found that the AutoML model had a sen-
sitivity of just 56.3% in Asian patients and was over-predict-
ing negative outcomes. This issue manifested at the default 
classification threshold of 0.5, meaning that the model must 
reach a predicted probability of at least 50% to classify an 
eye as ‘Above’. Using the WIT to reduce the classification 
threshold to 0.4 helped rectify the model’s conservative pre-
dictions in Asians, reducing the false negative rate from 22.6 
to 9.7%. This was associated with a reciprocal increase in the 
false positive rate from 6.5 to 12.9%. Threshold adjustment 
was a justified solution here, as the AUROC for Asians was 
consistent with overall model performance (Supplementary 
Table 5).

Table 1   Input feature summary 
statistics categorised by 
outcome label. For continuous 
variables, we report the median 
(Q1–Q3); as using the Shapiro–
Wilk test, all were found to 
have non-normal distributions. 
Differences between outcome 
groups were analysed using 
the Mann–Whitney U test 
for continuous variables 
and Fisher’s exact test for 
categorical variables. *HRF to 
5.d.p: yotal = 0.00071 (0.00021–
0.00236); Above = 0.00061 
(0.00016–0.00211) and 
Below = 0.00077 (0.00023–
0.00256)

Total (n = 1631) Above (n = 663) Below (n = 968) p-value

Age (years) 80 (73–85) 78 (71–83) 81 (75–86)  < 0.01
Ethnicity White 868 (53.2%) 388 (58.5%) 480 (49.6%)  < 0.01

Asian 170 (10.4%) 64 (9.7%) 106 (11.0%) 0.41
Black 33 (2.0%) 18 (2.7%) 15 (1.5%) 0.11
Other 380 (23.3%) 131 (19.8%) 249 (25.7%) 0.01
Unknown 180 (11.0%) 62 (9.4%) 118 (12.2%) 0.08

Gender Female 988 (60.6%) 400 (60.3%) 588 (60.7%) 0.88
Male 643 (39.4%) 263 (39.7%) 380 (39.3%) 0.88

Baseline VA (ETDRS) 58 (46–68) 67 (60–70) 50 (38–60)  < 0.01
OCT Features (mm3) RPE 0.81 (0.77–0.86) 0.83 (0.78–0.87) 0.80 (0.76–0.85)  < 0.01

IRF 0.00 (0.00–0.08) 0.00 (0.00–0.03) 0.01 (0.00–0.13)  < 0.01
SRF 0.20 (0.03–0.57) 0.19 (0.03–0.60) 0.20 (0.03–0.55) 0.85
HRF* 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.01
SHRM 0.13 (0.02–0.41) 0.07 (0.01–0.25) 0.19 (0.04–0.55)  < 0.01
PED 0.37 (0.13–0.90) 0.28 (0.10–0.71) 0.44 (0.17–1.04)  < 0.01
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AutoML performance dropped considerably in 
patients with an ethnicity of Other, with an AUROC of 
0.79 and an F1 score of 0.52 (Supplementary Table 5). 
Similar results were obtained using the XGBoost model, 
suggesting that a reductionist label like Other is detri-
mental for the models. Full performance breakdowns by 
ethnicity are available for both models in Supplementary 
Tables 5 and 6.

Analysing how our models reach their decisions

Analysing the Google Cloud Logs indicated that our 
AutoML Tables model was of an ensemble of 10 neural net-
works and 15 gradient-boosted decision trees. This complex-
ity comes at the cost of interpretability, evident in the lack of 
information yielded by even our simplified illustration of one 
of the neural networks (Fig. 4a). In contrast, an advantage of 
XGBoost is our ability to determine how it makes its deci-
sions by visualising a tree (Fig. 4b). However, this becomes 
intractable with increasingly large tree numbers.

To gain intuition for how our models reach their decisions, 
we analysed feature importance for both models (Fig. 5a). 
This highlighted baseline VA as the most important fac-
tor in determining visual outcomes, with a relative feature 
importance (RFI) of 0.498 and 0.556 in our AutoML and 

XGBoost models, respectively. This was followed by age 
(RFI 0.112/0.117) and ethnicity (RFI 0.103/0.077). Regard-
ing the OCT volume measurements, AutoML Tables gave 
most weight to the level of PED (RFI 0.076/0.058), whilst 
the XGBoost model prioritised IRF levels (RFI 0.054/0.069).

As feature importance does not provide specific insight 
into how these features affect model predictions, we used the 
WIT to construct partial dependence plots (PDPs). These 
depict how the model’s average prediction for the test set 
changes as one input feature is varied and others are fixed. 
Crucially, this is a model agnostic technique that can be uti-
lised to query any AutoML Tables model regardless of its 
architecture, as well as our XGBoost model. PDP analysis 
revealed a sigmoidal relationship between baseline VA and 
the probability of being predicted an outcome of ‘Above’ 
(Fig. 5b), with any increase in baseline VA between 55 and 
65 being most significant. This is in line with data that sug-
gests an average improvement in VA score of 7.2–11.3 dur-
ing the first year of anti-VEGF treatment [37].

The PDP for age demonstrated that the XGBoost model’s 
predictions were not receptive to changes in age below 66 
or between 70 and 81 years old (Fig. 5c). In contrast, any 
increase in age from 66 to 70 significantly decreased the 
probability of being classified as ‘Above’. The AutoML 
model shows a more consistent negative trend, likely due 

Fig.3   Receiver operating characteristic (ROC) curves and confu-
sion matrices for AutoML and XGBoost models. a ROC curves for 
both models on test data, showing discriminative performance at pre-
dicting whether patients with nAMD would have a VA ‘Above’ or 

‘Below’ 70 after one year of treatment. Grey line represents a random 
classifier. b Confusion matrices for AutoML and XGBoost models. 
Predicted labels were assigned using the default classification thresh-
old of 0.5

Table 2   Summary performance metrics for the AutoML Tables and XGBoost models. Metrics were calculated at the default classification 
threshold of 0.5. PPV positive predictive value. NPV negative predictive value

AUROC Sensitivity Specificity PPV NPV Accuracy F1 score

AutoML 0.849 69.0% 82.1% 72.6% 79.3% 76.7% 0.71
XGBoost 0.847 67.0% 84.8% 75.3% 78.8% 77.6% 0.71
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to the averaging effect achieved by the diverse ensemble. 
Notably, in both models, the probability of being predicted 
a positive outcome falls sharply beyond the age of 81.

The PDPs for the two most important OCT-derived meas-
urements were highly concordant (Figs. 5d, 5e). For both 
IRF and PED, an initial increase from 0.0mm3 was associ-
ated with the models more likely to predict an outcome label 
of ‘Below’. However, beyond a certain point (0.15mm3 for 
IRF; 0.50mm3 for PED), further pathology did not affect the 
model’s predictions. PDPs for the remaining features are 
available in Supplementary Fig. 3.

Case studies

To further elucidate the decision boundaries of our AutoML 
Tables model, we present case studies demonstrating where 
the model has classified a patient correctly or incorrectly.

Patient A is a 76-year-old White female (Fig. 6a). The 
patient had a baseline VA of 55—well below the thresh-
old—but is correctly predicted to be above the threshold by 
12 months (Fig. 6b). To understand why the model predicted 
a positive outcome, we utilised the local feature importance 
tool available on the AutoML Tables platform. This shows 
how each input feature contributed to the model’s inference 
score (estimated probability that an eye will be ‘Above’) of 
0.524 for this patient. These contributions are determined 
relative to the model’s baseline inference score of 0.48, cal-
culated using mean values for continuous input features and 
mode for categorical features. This demonstrated that the 

presence of 1.03mm3 of SRF was the major decision-deter-
mining factor for this patient, boosting the model’s infer-
ence score by 0.044 relative to the baseline (Fig. 6c). This 
is consistent with previous literature which suggests that the 
presence of SRF is associated with good visual outcomes 
[38]. We explored this further using an Individual Condi-
tional Expectation (ICE) plot. These are similar to PDPs but 
for a specific patient, depicting how the model’s prediction 
changes when one input feature is varied whilst others are 
fixed at their true values. This revealed a decision boundary 
at 0.4mm3 SRF (Fig. 6d).

We also present patient B, an 81-year-old Asian male 
(Fig. 7a). Local feature importance highlights the patient’s 
ethnicity as the critical factor in the model wrongly predict-
ing an outcome of ‘Below’ (Fig. 7c). Using the WIT, we 
hypothetically changed his ethnicity to British and found the 
model now predicted an outcome of ‘Above’. Moreover, this 
patient’s ICE plot for baseline VA demonstrates that a very 
small change in this value would have flipped the model’s 
prediction (Fig. 7d). This is important considering the small 
element of human error associated with the measurement 
of VA [39].

Discussion

In this study, we have evaluated an AutoML Tables model 
for the binary classification task of predicting whether 
patients with nAMD will have a visual acuity above or below 

Fig.4   AutoML Tables and XGBoost model architectures. a Simpli-
fied diagram of one of the neural networks from the AutoML Tables 
ensemble model, consisting of one input layer, two hidden layers 
each with 128 nodes, a dropout of 0.25 and dense skip connections 
(curved arrows). Lines represent flow of information through the net-
work from top to bottom. b Diagram of decision tree number 20 from 

the XGBoost model. Leaf values displayed are summed across all 50 
trees and transformed using a logistic function to give the model’s 
estimated probability of an eye belonging to the ‘Above’ class. Full 
hyperparameter information for both models is available in Supple-
mentary Tables 3 and 4
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a threshold VA score of 70, one year after initiating anti-
VEGF treatment.

We have demonstrated that an AutoML Tables model 
can achieve similar results to a manually designed bespoke 
algorithm without necessitating coding expertise. Our model 

also significantly improves upon a previously reported model 
predicting similar outcome measures with an AUROC of 
0.78 [9]. Our work represents a framework whereby clini-
cal researchers with limited coding skills may utilise ML 
techniques to test their own hypotheses.

Fig.5   Feature importance and partial dependence plots (PDPs). a 
Relative feature importance, showing the average marginal contribu-
tion of each feature to each model’s predictions. These values were 
normalised to sum to 1.0 (see the ‘Methods’ section). PDPs: These 
show how the inference score (model’s predicted probability that an 
eye belongs to the ‘Above’ class) changes when a specified input fea-

ture is varied, and all other features are held at their true value. This 
is averaged for all datapoints in the test set to give the average infer-
ence score. The horizontal black line represents the default classifica-
tion threshold of 0.5. b PDP for baseline VA. c PDP for age. d PDP 
for intraretinal fluid volume. e PDP for pigment epithelium detach-
ment volume
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Patients newly diagnosed with nAMD are typically con-
fronted with a high degree of uncertainty regarding their 
prognosis [8]. Our model helps address this problem, dem-
onstrating the potential for instant and personalised vision 
predictions at initiation of treatment. A prediction of ‘Above’ 
could promote treatment adherence and provide reassurance 
to patients regarding their eyesight, which is known to be 
positively associated with quality of life [40]. Our model’s 
high specificity is also desirable for patients with worse pre-
dicted visual outcomes, as early mental and occupational 
health support is beneficial to those patients [41].

Thus far, the implementation of ML in healthcare set-
tings remains uncommon [42]. Barriers to clinical imple-
mentation include the lack of insight into how models reach 
their decisions and concerns regarding hidden stratification 
as a source of bias [43]. This motivated us to establish an 
AutoML-WIT pipeline (video available in Supplementary 
Information) that facilitates model interpretability.

Using the WIT, we found that predictions were pessi-
mistic for Asian patients and that models performed worse 
in the Other ethnic group. More than 96% of participants 
in the major MARINA and ANCHOR anti-VEGF clinical 

trials were of White background [44]. Thus, clinical imple-
mentation of this model without first addressing these issues 
risks further reinforcing the disparities of non-White patients 
with regard to anti-VEGF treatment. Threshold adjustment 
using the WIT was able to rectify the high false negative rate 
in Asian patients. In contrast, the poor performance in the 
Other ethnic category represents a constraint by the available 
retrospective ethnicity data, which follows the UK Census 
system [45].

As expected, baseline VA was the most important 
input feature for our models. This was followed by age 
and ethnicity, a possible indication as to why our model 
exceeded the performance of a previously reported 
model that did not include demographic data [9]. The 
importance of ethnicity to our models merits further 
enquiry, as recently a systematic review of 30 studies 
looking into factors that affect VA outcomes in nAMD 
found that none had studied the effect of ethnicity [10]. 
The OCT-derived measurements played a small but 
significant role in model predictions, with a notable 
exception in the case of HRF, which was of negligible 
importance.

Fig.6   Patient A: true positive case study. a Input feature values for 
patient A. b VA changes throughout the first year of treatment, as 
measured at each follow-up appointment. NB: Only baseline infor-
mation used to train model. c Local feature importance showing how 
each feature affected the AutoML model’s inference score relative to 
the baseline score of 0.48. d Individual conditional expectation (ICE) 

plot showing how the model’s inference score changes as SRF vol-
ume is hypothetically varied and other features are kept as shown in 
Fig. 6a. The indicated point represents patient A’s actual SRF volume 
at baseline, whilst the horizontal black line represents the default 
classification threshold of 0.5
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Through local feature importance and ICE plots, we fur-
ther show that our AutoML-WIT pipeline is able to provide 
comprehensive insight into why individual patients were 
predicted to be above or below the VA threshold. Our false 
negative case study raises the question of how this informa-
tion would be handled in clinical practice. Given the detri-
mental effect that patient B’s ethnicity had on the model’s 
prediction, how will doctors determine when to overrule 
model predictions that seem irrational?

Limitations

Our study has several limitations. We excluded patients that 
lacked a follow-up appointment at one year. This may intro-
duce a selection bias, as it likely has a disproportionate effect 
on patients with poor visual outcomes who find it more dif-
ficult to attend appointments. Our sample size of 1631 is 
relatively small for training an ML task, and better perfor-
mance is likely to be dependent on securing larger, national 
datasets. A small sample size limits the scope to analyse 
performance by ethnic group; for example, there were only 
15 eyes belonging to Black patients present in our test set. 

This also increases the likelihood of imbalances, such as the 
higher proportion of Asian patients with good VA outcomes 
in our test set compared to the training set. Moreover, results 
from a model trained on MEH patients—though clinically 
representative of the nAMD demographic—may not gener-
alise well to other care settings which adopt different treat-
ment protocols.

As we utilised real-world data, variation in treatment pro-
tocols was observed amongst MEH patients. One strategy 
to mitigate this may be adjusting for additional confound-
ing variables, such as injection frequency. However, our 
primary focus was a comparative analysis of AutoML and 
how the WIT facilitates the investigation of algorithmic bias, 
rather than to build the most robust and generalisable model 
possible.

Finally, it is important to clarify that, whilst our AutoML 
model was able to achieve an AUC of 0.849, such models are 
not yet ready to incorporate into clinical practice. The sen-
sitivity of our model was 0.69, suggesting a notable risk of 
false negative predictions. Nevertheless, the future potential 
for AutoML adoption in clinical practice is optimistic, con-
sidering the rapid rate at which these platforms are improv-
ing and the increasing availability of larger datasets.

Fig.7   Patient B: false negative case study. a Input feature values for patient B. b VA changes throughout first year of treatment. c Local feature 
importance. d ICE plot for baseline VA. The indicated point represents patient B’s actual baseline VA
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Conclusion

In summary, our work builds upon the growing body of 
literature regarding AutoML in healthcare. The major-
ity of this research has focused on image data. Here, we 
demonstrate an interpretable AutoML Tables model which 
can predict VA outcomes in patients with nAMD using a 
structured dataset. This type of data exists in abundance in 
electronic health records. Thus, there is significant oppor-
tunity for future work to utilise our AutoML-WIT pipeline 
to develop high performing, interpretable ML models with 
minimal coding.
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