
Tutorial

Democratizing Artificial Intelligence Imaging Analysis With
Automated Machine Learning: Tutorial

Arun James Thirunavukarasu1,2, BA, MB BChir; Kabilan Elangovan2, BEng; Laura Gutierrez2, MD; Yong Li2, MD;

Iris Tan2, BEng; Pearse A Keane3, MD; Edward Korot4,5, MD; Daniel Shu Wei Ting2,4,6, PhD
1University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
2Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore, Singapore
3Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
4Byers Eye Institute, Stanford University, Palo Alto, CA, United States
5Retina Specialists of Michigan, Grand Rapids, MI, United States
6Singapore National Eye Centre, Singapore, Singapore

Corresponding Author:
Arun James Thirunavukarasu, BA, MB BChir
University of Cambridge School of Clinical Medicine
Addenbrooke's Hospital
Hills Rd
Cambridge, CB2 0SP
United Kingdom
Phone: 44 01223 336700
Email: ajt205@cantab.ac.uk

Abstract

Deep learning–based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even
exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated
machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians
with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we
provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical
practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best
practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are
considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are
considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling “hands-on” education.
AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational
resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The
abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition
from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on
how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant
considerations.
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Introduction

Automated machine learning (autoML) is the product of
attempts to broaden artificial intelligence (AI) engineering
capability beyond those with technical and computational
expertise [1]. Machine learning (ML) is a form of AI that

describes the computational process of leveraging data to
improve performance in a defined task, thereby developing
sophisticated models without explicit programming. More
recently, deep learning (DL) has emerged as a powerful form
of ML capable of interpreting unstructured data, such as images,
language, and speech [2,3]. In DL, layers of representation are
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developed that iteratively manipulate input data until useful
features emerge, permitting the processing of highly complicated
data sets. These layers are composed of tuned artificial neurons;
computationally encoded mathematical functions that together
comprise a deep neural network. Results across medicine have
been impressive, with the production of many models with
expert or beyond-expert accuracy, sensitivity, and specificity
[4]. AutoML acts to extend automation even further through
various aspects of algorithm development, including
hyperparameter optimization and neural architecture search [1].

Many autoML platforms have been developed in industry and
academia, with recent innovation producing platforms capable
of DL, compatible with unstructured input data such as medical
images (Figure 1) [5,6]. These platforms, with different
requirements, capabilities, and limitations, may be categorized
based on the spectrum of user coding requirements (Table 1).
To capitalize on the potential of AI, more users must be able to
harness DL and other ML techniques, leveraging the health care
data that continues to be accrued at an accelerating rate [7]. This
reduction in the requirement for expertise and computational
requirements constitutes the “democratization” of AI technology
[5,8]. Democratization refers to the broadening of access to
technology conferred by reduced technical and hardware
requirements.

When effectively deployed, DL has the potential to improve
patient safety, quality of health care, and cost-effectiveness
[9-11]. These improvements are based on the accuracy, speed,
and reproducibility of DL algorithms, which can exceed that of
humans with extensive training [9,10]. Accurate and reliable
computational models may complement skilled human
assessments as a part of novel systems with equivalent or

superior performance to conventional practice with the
additional benefit of being less expensive [11]. Successful
projects benefit from interdisciplinary collaboration, with
clinical and technical expertise brought to bear [12]. Clinicians,
computer scientists, and data scientists work together, and their
time and resources are scarce [13-15]. Collaboration also
introduces complications regarding communication, particularly
where individuals’ expertise differs, and regarding sharing
patient data for which privacy is closely governed [16].
Increasing the accessibility of high-performance DL for
clinicians with autoML may ameliorate these issues [6]. Through
the democratization of DL, a greater number of AI-literate
clinicians can contribute to the research, implementation, and
governance of these systems [17]. Moreover, emerging AI
models with the capability to leverage application programming
interfaces as tools could facilitate AI building itself at a rapidly
accelerating rate; early examples include GPT-4, PaLM 2, and
LLaMA 2 [18].

Below, we show how to use autoML for medical image analysis
for clinicians and other interested allied health care
professionals, with step-by-step illustrations of workflow,
important considerations, and requirements. The strengths and
weaknesses of code-free, code-minimal, and code-intensive
platforms are discussed, in addition to the capabilities and
limitations of each platform. The potential use cases of autoML
in education, primary research, and clinical practice are outlined.
The technical and ethical best practices are emphasized
throughout to encourage maintained or even improved standards
of development and reporting, as a broader subset of clinicians
gain access to AI and as developers look to adopt a data-centric
approach to constructing models [19].

Figure 1. Relationship between autoML, deep learning, machine learning, and artificial intelligence. autoML: automated machine learning.
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Table 1. Summary of autoML platforms facilitating deep learning for images, with an appraisal of accessibility and portability.

PortabilityAccessibilityAutoMLa platform

ExplainabilityExportabilityComputing locationCode requirementCost

NoNoCloudNoneChargeableAmazon recognition

NoTo Apple devicesLocalNoneFree on specific devicesApple create MLb

NoYesLocalCoding requiredFreeAuto-PyTorch

YesYesLocalCoding requiredFreeAutoGluon

NoYesLocalCoding requiredFreeAutoGOAL

NoYesLocalCoding requiredFreeAutoKeras

NoTo edge devicesLocal or cloudNoneChargeableBaidu EasyDL

NoTo edge devicesCloudNoneFree (chargeable features)Clarifai

YesTo edge devicesCloudNoneChargeableGoogle Cloud AutoML Vision

NoNoCloudNoneChargeableHuawei ExeML

YesYesLocal or cloudNoneChargeableH2O.ai Hydrogen torch

YesYesLocalCoding requiredFreeH2O R/Python packages

YesYesLocal or cloudNoneChargeableH2O.ai Driverless Al

NoYesLocalNoneFree (chargeable features)KNIME

NoYesLocalCoding requiredChargeableMATLAB

YesYesCloudNoneFree (chargeable features)MedicMind

NoTo edge devicesCloudNoneChargeableMicrosoft Azure AutoML

NoYesLocalNoneChargeableNeuro-T

YesYesLocal or cloudNoneChargeableSony prediction one

aAutoML: automated machine learning.
bML: machine learning.

Technical Overview
In general, autoML technology executes part or all of the ML
engineering process without users’ input (Figure 2). Without
autoML, these tasks require skilled data or computer scientists.
Through a process of trial and error, informed by prior
experience, these experts attempt to find an optimal neural
network structure and hyperparameters to solve clinical
problems, such as disease diagnosis, treatment planning, or
prognosis prediction. AutoML has been applied primarily to
classification tasks thus far, where an algorithm seeks to
correctly identify (“classify”) images exhibiting one of a defined
set of potential conditions or diseases (“classes”) [5,6]. A wide
variety of ML algorithms such as k nearest neighbors, support
vector machine, random forest, neural network, naive Bayes,
and logistic regression exist for classification, from which an

autoML platform may select depending on comparative
performance [20]. This is an example of supervised learning,
as input data must be labeled by defined classes. In contrast,
autoML for unsupervised and reinforcement learning is
relatively nascent [21,22].

To achieve performance comparable to bespoke ML models
trained by computer scientists, autoML platforms use a variety
of methods and optimization techniques including Bayesian
optimization, random search, grid search, evolutionary-based
neural architecture selection, and meta-learning [23]. An optimal
model may then be outputted for internal or external validation,
interpretation, and deployment. Many platforms, with various
accessibility, technical features, and portability, have been
developed in academia and industry. When deciding which
platform to use, researchers and clinicians should consider their
capabilities, requirements, and aims.
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Figure 2. A conceptual diagram of automated machine learning, which may generate a predictive model from input data in the form of medical images.
Data preprocessing entails the processing of inputs to augment and simplify the data, and "clean" data into a compatible format. Feature extraction
involves the identification of the elements of the input data, which provide the most discriminative power. Model selection, training, and optimization
summarize the process of training a myriad of potential deep learning architectures, selecting the best-performing architecture, and optimizing
hyperparameters such as time to train or the number of iterations using training data. To judge which model is optimal, and to report its effectiveness,
performance evaluation is required. Some automated machine learning platforms facilitate interpretation, allowing the deduction of how decisions are
reached.

Workflow
The process of applying DL to medical image analysis generally
involves gathering high-quality data, training a model, and
evaluating its performance; the reporting of these processes has
been standardized [24]. The process of applying autoML is
comparable, despite being less technically demanding, and still
relies on careful selection and labeling of representative data

sets for the designated use case (Figure 3). These data-driven
principles are applicable across different imaging modalities,
including X-ray, ultrasound, computed tomography, magnetic
resonance imaging, optical coherence tomography, fundus
photography, and angiography [25]. The algorithms can be
trained very quickly using autoML with expert or even
supraexpert ability to classify medical images [6].

Figure 3. The process of developing a deep learning model with automated ML. Minimally expected processes facilitated by an automated ML platform
are within the gray-shaded region. However, platforms variably assist with other processes. 1A: public data set curation; 1B: private data set curation;
2: partitioning; 3: training; 4: internal validation; 5: curation of independent data set; 6: external validation; 7: performance evaluation and results
presentation. AUC: area under the curve; ML: machine learning.
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Data Set Curation

Data Management
For trained algorithms to be appropriate for clinical deployment,
it is helpful to use data in the same format as in routine clinical
practice. This may be complicated where different formats exist
within a single imaging modality, such as from different
machines or scanning protocols; an ML model may struggle to
classify images due to insufficient salient clinical features
relative to structural differences in diverse input. Converting
images to a common format may involve manual formatting,
down-sampling resolution, or labeling classes with folders or
file names. Larger data sets are often assumed to be less
susceptible to weaknesses but are not a solution in themselves
[26]. In some cases, larger data sets lead to worse performance
in a classification task, as seen in published studies attempting
to distinguish cognitively normal, mild cognitive impairment,
and patients with Alzheimer disease [26]. However, the sample
size must be sufficient to represent the general population to
which algorithms may be applied, and requirements are more
stringent where disease features vary widely or where
differences between patients are subtle.

Publicly Available Data (Step 1A)
Many data sets curated to support ML research exist, covering
a wide variety of imaging modalities and clinical diagnoses
[27,28]. These permit researchers to download and use data to
train and test ML models including autoML, but attention to
specific permissions is required to avoid breaching privacy or
copyright regulations. Data sets often make specific requests
of researchers using their files, such as citing a source study in
any resultant published work. Furthermore, they often have
licensing limits for the development of commercial algorithms
derived from the posted data. Where privacy permissions are
restricted, robust data security is essential to ensure patient
information is not shared with unauthorized parties.

Public data sets are often prelabeled according to a condition
of interest. For researchers, it is essential to determine the source
of labels and adjudge whether the labeling process is suitably
rigorous to use for their specific project, and if the “ground
truth” (data set labels that are assumed to be true during training)
is sufficiently accurate. If quality standards are not met, such
as if labeling was conducted by insufficiently skilled clinicians,
if there was no arbitration or adjudication process, or if mistakes
are apparent, researchers need to arrange relabeling or correct
the wrong labels themselves. By improving the quality of input
data, algorithm performance may be significantly stronger, with
fewer errors expected [29].

Private Data (Step 1B)
Private data sets may be curated by researchers as part of an
autoML project. This requires institutional review board ethical
approval, as well as informed consent from patients to use their
data in an explicitly defined research context. As discussed
above, data security is of paramount importance to ensure
consent is not breached regarding the persons given access to
patients’data. Sharing data with commercial autoML platforms
may be prohibited, necessitating the use of local autoML
platforms, such as H2O, Apple CreateML, or autoKeras.

Deidentification of data may be a requirement to obtain research
ethical approval, retaining only essential elements to facilitate
labeling and classification [30].

Labeling should be undertaken by the research team. While
certain autoML platforms assist with labeling through active
learning, these are often cloud-based services that may require
additional institutional approval before use. Labeling may be
based on incontrovertible pathologic, genomic, or clinical
outcome ground truth or a less accurate approximation based
on annotations by expert clinicians, preferably conducted
prospectively as clinicians may thereby incorporate
contemporaneous clinical and laboratory data into their
decision-making. Rigorous arbitration and adjudication are
required to minimize labeling errors, which may otherwise
significantly impair model performance [30,31].

Partitioning (Step 2)
Data partitioning is a critical preliminary step when building
any ML model in order to evaluate model performance fairly
on an unseen, representative data set independent from the
images used to train the model. Data must be split into training
and testing partitions, and there is a wide range of partitioning
algorithms with different strengths and limitations summarized
as round-robin, hash, range, and random schemes [32]. As a
rule of thumb, 80% of available data may be used for training,
with 20% used for testing (internal validation). Most autoML
platforms facilitate the upload of separate partitions
corresponding to training and testing; otherwise, the platforms
themselves split data accordingly. Automatic partitioning with
obtuse algorithms results in training and testing data sets that
may not be known to the user, precluding the establishment of
representativeness of these data sets. Therefore, it is best practice
to manually partition data sets with patient-level splits, using
reproducible and documented methods.

Training and Internal Validation (Steps 3 and 4)
Reliance on a single data set (especially if small) may result in
“overfitting”—where algorithms learn features specific to the
images in the training data set only [33]. While performance
may be exceptional on the training data set, it is weaker when
algorithms are applied to unseen data. To avoid this trap, a small
subset of data must be reserved for validation, which acts as a
means of observing model performance at each training iteration
to guide the process and adjudge when algorithms have been
optimally entrained. Separation is key, as algorithms are
expected to perform accurately with images previously “seen”;
the training data set has features identical to those “learned” by
a model to be associated with classification labels. By using a
data set entirely separate from the training process, a fairer
evaluation of model performance may be obtained and
summarized with an array of statistical metrics (discussed in
step 7). In practice, ML models improve accuracy on this
internal validation data set as the primary indicator of successful
training: the final algorithm corresponds to that which performs
best on the internal validation data set, where classification
accuracy is maximized without overfitting to the training data.
Many autoML platforms use cross-validation, where multiple
partitioning processes are applied to generate separate testing
and training data sets. In this case, model selection is based on
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optimal performance across iterations over all the partitioned
data sets, further reducing the risk of overfitting [33].

Curation of an Independent Data Set (Step 5)
To externally validate a predictive model, data entirely separated
from the training and testing process must be used. External
validation demonstrates true generalizability if performance is
acceptable with diverse data sets, representative of future cohorts
where models may be used with a range of idiosyncratic
differences inherent in obtaining images in different clinical
environments. While the curation process is identical to that
described in steps 1A and 1B, there exists an additional option
to collect data prospectively to facilitate a robust analysis of
model performance in clinical conditions, with a lower risk of
bias [34]. This entails obtaining ethical approval and may require
patient consent, as well as the time and clinical training required
to collect suitable data. Conducting a prospective pragmatic
trial would represent the strongest form of primary evidence
for justifying deployment in clinical settings in the future.

External Validation (Step 6)
Using an independent data set on the same model is important
to demonstrate generalizability beyond the restricted data used
to initially train and test the autoML algorithm. This is most
conveniently executed through batch prediction of an external
validation data set, but platforms may restrict processing to
single images or prohibit the export or deployment of a model
without extra costs [6]. While external validation is preferably
undertaken by a separate research team to avoid a potential
source of bias, initial validation may be done by the same team
to improve the veracity of their performance claims [35,36]. If
open-source data sets are used, performance with as many data
sets as possible should be reported to avoid selection bias
resulting from cherry-picking of data where performance is
higher; this may be due to the external validation data set being
more similar to the training and internal validation data set.

Performance Evaluation and Results Interpretation (Step
7)
Model performance metrics and visualizations are the most
important features to users in terms of developing trust in an
autoML platform [37]. Many metrics are used in ML research;
some are a function of prevalence such as accuracy, area under
the precision-recall curve (PRC), and F1 score, whereas others
are a function of the model threshold, such as accuracy and F1
score [38]. Threshold refers to the cutoff point of prediction
probability above which the model gives one output or another,
governing sensitivity and specificity. Many autoML platforms
provide just a few performance metrics, in part due to displaying
results from an “optimal” model operating at a single threshold,
which prohibits calculation of metrics such as area under the
precision-recall curve or area under the receiver operating
characteristic curve (ROC), and PRC and ROC plots cannot be
produced without implementing the model at a range of
thresholds. With only a snapshot of performance statistics at
one model threshold, it is possible that apparent performance
is inflated by condition prevalence or model hypersensitivity.
In addition, threshold customizability increases the likelihood
of a model being clinically useful. While a particular

performance metric may be maximized at 1 threshold, there
may be a requirement for tuning, such as to optimize the
sensitivity or specificity. Providing more metrics may allow
fairer comparison to alternative computational techniques and
expert clinician performance, and confusion matrices are an
essential tool to judge the use of a model’s performance. Certain
platforms do provide the customizability to generate PRC and
ROC plots, but these often have a greater requirement for
coding.

Explainability is an ML research priority due to concerns over
delegating responsibility to “black box” models. By
understanding how models make successful predictions, the
potential risks of delegating decision-making to systems with
occult biases are avoided [39]. Clinicians and patients may have
more confidence in the so-called explainable AI. The availability
of transparency features on autoML platforms is recognized as
a key aspect of users’ trust and understanding when using these
tools [37]. Some platforms have inbuilt explainability features;
examples include H2O.ai Driverless AI and Google Cloud
AutoML, which provide Grad-CAM and XRAI-derived saliency
maps depicting which parts of an image contributed to
classification [40]. However, these tools leave an
“interpretability gap,” which can lead to misleading conclusions
[41]. Further explainable AI innovation is required, but this is
complicated with platforms that do not facilitate model export
and deployment on new batches of data, as with external
validation. New tools are being developed to facilitate the
interpretation of ML and even autoML models less amenable
to export; examples include the What-If Tool which facilitates
counterfactual analysis of model performance and individual
classification decisions as input data are altered [42].

Capabilities and Limitations: Platform Comparison
The wide variety of autoML platforms offers different
capabilities and limitations. In general, platforms may be
discussed in terms of their requirement for coding ability, with
code-free, code-minimal, and code-intensive examples (Table
1). Platforms may also be parsed by the location of data and
processing as either cloud-based or local. Cloud-based solutions
may be more secure than local solutions due to industry-standard
encryption and International Organization for Standardization
compliance audits but require explicit ethical approval to be
used with sensitive patient data. Without ethical approval, using
cloud-based autoML is limited to open-source data sets, which
are now abundant but often lacking in terms of quality labeling
and representative populations [27,28]. While local platforms
may be preferred for their tendency not to require payment for
access, hardware requirements may be prohibitive and security
protocols must be sufficiently robust, limiting their role in
democratizing AI.

Technical features correspond to the development process
outlined in Figure 2. The so-called “end-to-end” platforms may
be defined as those that automate all these processes; all users
are required to do is input labeled data. Most platforms equipped
for DL have end-to-end functionality, operating without a
requirement for user input. Platforms differ in their
permissiveness of model export for further validation,
explainability analysis, and potential deployment. In general,
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local platforms always facilitate the export of models amenable
to explainability analysis, external validation, and deployment
at scale. Cloud-based platforms are generally more of a “black
box,” offering no details as to the model architecture, but some
enable model export and batch prediction to facilitate external
validation and explainability analysis—often in return for a fee.

Use Cases of AutoML

Medical Education
AutoML for medical image analysis can be an educational tool
for clinicians and medical students. By lowering the requirement
for coding expertise or GPU access, autoML permits more
learners to explore ideas practically rather than merely
discussing them in theory. Learners can actively produce and
modify models to demonstrate the importance of data set quality,
validation, and explainability for themselves [43]. This may
also provide learners with the intuition of an ML developer
sooner—conferring greater practical expertise than a mere
understanding of theory alone when approaching new problems.
As autoML promotes interaction with data over coding, further
learning through institutional courses or individual initiatives
is required to develop the necessary ML expertise to engineer
bespoke, fully customizable models. However, focusing on data
may best prepare clinicians for future trends in ML development
and promote mechanical understanding of algorithms rather
than learning tricks to maximize performance.

A transition from model-driven to data-driven
techniques—incubated and facilitated by autoML—has been
discussed as a means of accelerating development, as arduous
engineering is bypassed. This complements the recent drive to
inculcate “data-centric AI” (spearheaded by Andrew Ng), where
data set curation is focused on rather than optimizing code. As
the supply of high-quality data is more often the limiting factor
in development than code or model infrastructure, future
innovation is likely to focus on the generation and aggregation
of training data [19]. The approach is a nascent paradigm in
medicine, although promising results have begun to emerge.

Medical Research
Another main use case for autoML is medical image-based
primary research, including pilot studies and larger-scale
projects. AutoML pilot studies, with relatively low costs in
terms of time and money, may be used to gauge whether a
research question can be solved with AI and ML techniques.
AutoML enables clinicians to perform initial proof of concept
studies with private and well-labeled data, generating initial
outcomes without a requirement for collaboration with
computational experts, enabling optimization of research
resource allocation. For example, autoML may help determine
whether a certain sample size or quality level of images is useful
and practical for developing classification models. This is an
alternative to haphazard trial and error, which wastes expertise,
time, and resources as infeasibility is determined at a later step.
External technical collaborators may be approached with
promising interim results generated by autoML, increasing the
likelihood of a proposed project succeeding. Applications for
research funding may be strengthened by promising pilot study
results generated with autoML.

AutoML may also be used independently in primary research.
However, to apply autoML in medical image analysis, there are
rigorous academic requirements, including standardization of
benchmarks, ensuring reproducibility in analysis and the
interpretability of outcomes, and following guidelines for
research and reporting, such as for Developmental and
Exploratory Clinical Investigations of Decision Support Systems
Driven by Artificial Intelligence (DECIDE-AI) [24]. The
technical limitations of certain autoML platforms make
adherence to these standards more challenging, but useful results
have been and will continue to be produced with autoML
technology.

Clinical Deployment
As with all AI research in health care, models are hoped to
improve patient care in real-world settings [44]. As studies have
demonstrated the performance of models generated by autoML
to be comparable or even higher than those generated with
conventional AI techniques, there is a basis for exploring the
clinical deployment of autoML. Although autoML often restricts
explainability and interpretability—discussed above—many
Food and Drug Administration-approved models have no
explainability [45]. However, to be deployed in direct clinical
care, autoML models must meet the same regulatory standards
as conventionally developed AI applications. These standards
are evolving around the world but involve extensive evaluation
and validation and are often expensive application processes to
regulatory bodies. For regulatory clearance, emphasis is placed
on the intended clinical use; this must be defined precisely to
ensure deployment as desired is permissible if an application
is accepted. Requirements include demonstration of data
traceability and quality, so careful documentation is required
to preserve the source of data and ground truth. Model versions
must be documented with the data used at each step; only the
version accepted by a regulatory body may be deployed.
Additional considerations include governance systems,
adherence to software development cycle requirements and
International Organization for Standardization regulations,
integration into clinical workflow, and cybersecurity.

Conclusions
AutoML is an exciting innovation that reduces the barrier to
entry for AI development, including DL for medical image
classification. With the democratization of AI, it is hoped that
the quality and acceptance of AI innovations for patient
diagnosis, management, and prognosis will improve,
accelerating computational innovation in clinical practice.
Specifically, empowering nonspecialists to harness DL
technology may enable clinician-driven AI, allowing experts
with knowledge of domain-specific pain points to take a more
active role in the development of applicable, effective, and
useful new tools. The technical limitations of autoML are
reducing as corporate and academic developers continue to
improve available platforms, although conventional techniques
have an edge in terms of capability, customizability, and
explainability. This currently limits the potential of autoML,
particularly in younger, developing subfields such as multimodal
AI and autonomous foundation models [46,47]. Nevertheless,
autoML represents an excellent tool for interested clinicians to
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develop DL skills, conduct pilot studies and other research, and produce models to improve clinical practice.
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