2,462 research outputs found

    Cross-Kerr interaction in a four-level atomic system

    Full text link
    We derive the form of the cross-Kerr interaction in a four-level atomic system in the N-configuration. We use time-independent perturbation theory to calculate the eigenenergies and eigenstates of the Schrodinger equation for the system. The system is considered as a perturbation of a Raman resonant three-level lambda scheme for which exact solutions are known. We show that within the strong control field limit the cross-Kerr interaction can arise between two weak probe fields. The strength of this nonlinear coupling is several orders of magnitude larger than that achievable using optical fibres.Comment: 5 pages, resubmitted to Physical Review A with clarified style and correction to Fig

    Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber

    Get PDF
    We report on the generation of a continuous variable Einstein-Podolsky-Rosen (EPR) entanglement using an optical fiber interferometer. The Kerr nonlinearity in the fiber is exploited for the generation of two independent squeezed beams. These interfere at a beam splitter and EPR entanglement is obtained between the output beams. The correlation of the amplitude (phase) quadratures is measured to be 4.0±0.2 (4.0±0.4)dB below the quantum noise limit. The sum criterion for these squeezing variances 0.80±0.03<2 verifies the nonseparability of the state. The product of the inferred uncertainties for one beam (0.64±0.08) is well below the EPR limit of unity

    Composite Cluster States and Alternative Architectures for One- Way Quantum Computation

    Full text link
    We propose a new architecture for the measurement-based quantum computation model. The new design relies on small composite light-atom primary clusters. These are then assembled into cluster arrays using ancillary light modes and the actual computation is run on such a cellular cluster. We show how to create the primary clusters, which are Gaussian cluster states composed of both light and atomic modes. These are entangled via QND interactions and beamsplitters and the scheme is well described within the continuous-variable covariance matrix formalism.Comment: arXiv admin note: text overlap with arXiv:1007.040

    Quantum properties of the codirectional three-mode Kerr nonlinear coupler

    Full text link
    We investigate the quantum properties for the codirectional three-mode Kerr nonlinear coupler. We investigate single-, two- and three-mode quadrature squeezing, Wigner function and purity. We prove that this device can provide richer nonclassical effects than those produced by the conventional coupler, i.e. the two-mode Kerr coupler. We show that it can provide squeezing and the quadrature squeezing exhibiting leaf-revival-collapse phenomenon in dependence on the values of the interaction parameters. In contrast to the conventional Kerr coupler two different forms of cat states can be simultaneously generated in the waveguides. We deduce conditions required for the complete disentanglement between the components of the system.Comment: 23 pages, 6 figure

    Influence of modal loss on the quantum state generation via cross-Kerr nonlinearity

    Full text link
    In this work we investigate an influence of decoherence effects on quantum states generated as a result of the cross-Kerr nonlinear interaction between two modes. For Markovian losses (both photon loss and dephasing), a region of parameters when losses still do not lead to destruction of non-classicality is identified. We emphasize the difference in impact of losses in the process of state generation as opposed to those occurring in propagation channel. We show moreover, that correlated losses in modern realizations of schemes of large cross-Kerr nonlinearity might lead to enhancement of non-classicality.Comment: To appear in PR

    Gaussian multipartite bound information

    Full text link
    We demonstrate the existence of Gaussian multipartite bound information which is a classical analog of Gaussian multipartite bound entanglement. We construct a tripartite Gaussian distribution from which no secret key can be distilled, but which cannot be created by local operations and public communication. Further, we show that the presence of bound information is conditional on the presence of a part of the adversary's information creatable only by private communication. Existence of this part of the adversary's information is found to be a more generic feature of classical analogs of quantum phenomena obtained by mapping of non-classically correlated separable quantum states.Comment: 5 pages, 1 figur

    Universal Quantum Computation with Continuous-Variable Abelian Anyons

    Full text link
    We describe how continuous-variable abelian anyons, created on the surface of a continuous-variable analogue of Kitaev's lattice model can be utilized for quantum computation. In particular, we derive protocols for the implementation of quantum gates using topological operations. We find that the topological operations alone are insufficient for universal quantum computation which leads us to study additional non-topological operations such as offline squeezing and single-mode measurements. It is shown that these in conjunction with a non-Gaussian element allow for universal quantum computation using continuous-variable abelian anyons

    Highly non-Gaussian states created via cross-Kerr nonlinearity

    Full text link
    We propose a feasible scheme for generation of strongly non-Gaussian states using the cross-Kerr nonlinearity. The resultant states are highly non-classical states of electromagnetic field and exhibit negativity of their Wigner function, sub-Poissonian photon statistics, and amplitude squeezing. Furthermore, the Wigner function has a distinctly pronounced ``banana'' or ``crescent'' shape specific for the Kerr-type interactions, which so far was not demonstrated experimentally. We show that creating and detecting such states should be possible with the present technology using electromagnetically induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure
    corecore