28 research outputs found

    The Role of White-rot Fungi in Herbicide Transformation

    Get PDF
    Understanding herbicide transformation is necessary for pesticide development for their safe and efficient use, as well as for developing pesticide bioremediation strategies for contaminated soil and water. Recent studies persuasively demonstrated the key role of soil white-rot fungi in biotransformation of various anthropogenic environmental contaminants. However, often this common knowledge is not associated with specific metabolic processes of fungi and therefore cannot be transformed into specific recommendations for agricultural practice. The given review offers a systematic collection and analysis of the current knowledge about herbicide transformation by white-rot fungi at the cellular and molecular levels. Special attention is given to the role of oxidative enzymes such as laccases, lignin peroxidases, and manganese peroxidases in the biotransformation processes

    Natural Afforestation on Abandoned Agricultural Lands during Post-Soviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus

    Get PDF
    Remote monitoring of natural afforestation processes on abandoned agricultural lands is crucial for assessments and predictions of forest cover dynamics, biodiversity, ecosystem functions and services. In this work, we built on the general approach of combining satellite and field data for forest mapping and developed a simple and robust method for afforestation dynamics assessment. This method is based on Landsat imagery and index-based thresholding and specifically targets suitability for limited field data. We demonstrated method’s details and performance by conducting a case study for two bordering districts of Rudnya (Smolensk region, Russia) and Liozno (Vitebsk region, Belarus). This study area was selected because of the striking differences in the development of the agrarian sectors of these countries during the post-Soviet period (1991-present day). We used Landsat data to generate a consistent time series of five-year cloud-free multispectral composite images for the 1985–2020 period via the Google Earth Engine. Three spectral indices, each specifically designed for either forest, water or bare soil identification, were used for forest cover and arable land mapping. Threshold values for indices classification were both determined and verified based on field data and additional samples obtained by visual interpretation of very high-resolution satellite imagery. The developed approach was applied over the full Landsat time series to quantify 35-year afforestation dynamics over the study area. About 32% of initial arable lands and grasslands in the Russian district were afforested by the end of considered period, while the agricultural lands in Belarus’ district decreased only by around 5%. Obtained results are in the good agreement with the previous studies dedicated to the agricultural lands abandonment in the Eastern Europe region. The proposed method could be further developed into a general universally applicable technique for forest cover mapping in different growing conditions at local and regional spatial levels

    Natural Afforestation on Abandoned Agricultural Lands during Post-Soviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus

    Get PDF
    Remote monitoring of natural afforestation processes on abandoned agricultural lands is crucial for assessments and predictions of forest cover dynamics, biodiversity, ecosystem functions and services. In this work, we built on the general approach of combining satellite and field data for forest mapping and developed a simple and robust method for afforestation dynamics assessment. This method is based on Landsat imagery and index-based thresholding and specifically targets suitability for limited field data. We demonstrated method’s details and performance by conducting a case study for two bordering districts of Rudnya (Smolensk region, Russia) and Liozno (Vitebsk region, Belarus). This study area was selected because of the striking differences in the development of the agrarian sectors of these countries during the post-Soviet period (1991-present day). We used Landsat data to generate a consistent time series of five-year cloud-free multispectral composite images for the 1985–2020 period via the Google Earth Engine. Three spectral indices, each specifically designed for either forest, water or bare soil identification, were used for forest cover and arable land mapping. Threshold values for indices classification were both determined and verified based on field data and additional samples obtained by visual interpretation of very high-resolution satellite imagery. The developed approach was applied over the full Landsat time series to quantify 35-year afforestation dynamics over the study area. About 32% of initial arable lands and grasslands in the Russian district were afforested by the end of considered period, while the agricultural lands in Belarus’ district decreased only by around 5%. Obtained results are in the good agreement with the previous studies dedicated to the agricultural lands abandonment in the Eastern Europe region. The proposed method could be further developed into a general universally applicable technique for forest cover mapping in different growing conditions at local and regional spatial levels

    The High–Low Arctic boundary: How is it determined and where is it located?

    Full text link
    Geobotanical subdivision of landcover is a baseline for many studies. The High–Low Arctic boundary is considered to be of fundamental natural importance. The wide application of different delimitation schemes in various ecological studies and climatic scenarios raises the following questions: (i) What are the common criteria to define the High and Low Arctic? (ii) Could human impact significantly change the distribution of the delimitation criteria? (iii) Is the widely accepted temperature criterion still relevant given ongoing climate change? and (iv) Could we locate the High–Low Arctic boundary by mapping these criteria derived from modern open remote sensing and climatic data? Researchers rely on common criteria for geobotanical delimitation of the Arctic. Unified circumpolar criteria are based on the structure of vegetation cover and climate, while regional specifics are reflected in the floral composition. However, the published delimitation schemes vary greatly. The disagreement in the location of geobotanical boundaries across the studies manifests in poorly comparable results. While maintaining the common principles of geobotanical subdivision, we derived the boundary between the High and Low Arctic using the most up‐to‐date field data and modern techniques: species distribution modeling, radar, thermal and optical satellite imagery processing, and climatic data analysis. The position of the High–Low Arctic boundary in Western Siberia was clarified and mapped. The new boundary is located 50–100 km further north compared to all the previously presented ones. Long‐term anthropogenic press contributes to a change in the vegetation structure but does not noticeably affect key species ranges. A previously specified climatic criterion for the High–Low Arctic boundary accepted in scientific literature has not coincided with the boundary in Western Siberia for over 70 years. The High–Low Arctic boundary is distinctly reflected in biodiversity distribution. The presented approach is appropriate for accurate mapping of the High–Low Arctic boundary in the circumpolar extent

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    The Use of Deep Machine Learning for the Automated Selection of Remote Sensing Data for the Determination of Areas of Arable Land Degradation Processes Distribution

    No full text
    Soil degradation processes are widespread on agricultural land. Ground-based methods for detecting degradation require a lot of labor and time. Remote methods based on the analysis of vegetation indices can significantly reduce the volume of ground surveys. Currently, machine learning methods are increasingly being used to analyze remote sensing data. In this paper, the task is set to apply deep machine learning methods and methods of vegetation indices calculation to automate the detection of areas of soil degradation development on arable land. In the course of the work, a method was developed for determining the location of degraded areas of soil cover on arable fields. The method is based on the use of multi-temporal remote sensing data. The selection of suitable remote sensing data scenes is based on deep machine learning. Deep machine learning was based on an analysis of 1028 scenes of Landsats 4, 5, 7 and 8 on 530 agricultural fields. Landsat data from 1984 to 2019 was analyzed. Dataset was created manually for each pair of “Landsat scene”/“agricultural field number”(for each agricultural field, the suitability of each Landsat scene was assessed). Areas of soil degradation were calculated based on the frequency of occurrence of low NDVI values over 35 years. Low NDVI values were calculated separately for each suitable fragment of the satellite image within the boundaries of each agricultural field. NDVI values of one-third of the field area and lower than the other two-thirds were considered low. During testing, the method gave 12.5% of type I errors (false positive) and 3.8% of type II errors (false negative). Independent verification of the method was carried out on six agricultural fields on an area of 713.3 hectares. Humus content and thickness of the humus horizon were determined in 42 ground-based points. In arable land degradation areas identified by the proposed method, the probability of detecting soil degradation by field methods was 87.5%. The probability of detecting soil degradation by ground-based methods outside the predicted regions was 3.8%. The results indicate that deep machine learning is feasible for remote sensing data selection based on a binary dataset. This eliminates the need for intermediate filtering systems in the selection of satellite imagery (determination of clouds, shadows from clouds, open soil surface, etc.). Direct selection of Landsat scenes suitable for calculations has been made. It allows automating the process of constructing soil degradation maps

    REQUIREMENTS FOR DATA TRANSFER PROTOCOL WITH EXTERNAL DEVICES WITHIN FIRE NOTIFICATION TRANSMISSION SYSTEMS

    No full text
    The issues of elaboration of requirements for data transfer protocol in fire notification transmission systems are considered. The elaboration of requirements is related to the necessity of informational compatibility between fire notification transmission systems of various manufacturers and automated workstation of fire-and-rescue unit dispatcher. The basic structure of information data of the transfer protocol is proposed. The general and minimum required structure of information attributes of the database of objects of protection is determined. This database is installed at the automated workstation of the of fire-and-rescue unit dispatcher
    corecore