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Abstract

Understanding herbicide transformation is necessary for pesticide development for their
safe and efficient use, as well as for developing pesticide bioremediation strategies for
contaminated soil and water. Recent studies persuasively demonstrated the key role of
soil white-rot fungi in biotransformation of various anthropogenic environmental con‐
taminants. However, often this common knowledge is not associated with specific meta‐
bolic processes of fungi and therefore cannot be transformed into specific
recommendations for agricultural practice. The given review offers a systematic collec‐
tion and analysis of the current knowledge about herbicide transformation by white-rot
fungi at the cellular and molecular levels. Special attention is given to the role of oxida‐
tive enzymes such as laccases, lignin peroxidases, and manganese peroxidases in the bio‐
transformation processes.
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1. Introduction

Fungi are unique organisms that colonize all areas of the environment – air, water, and soil.
This group lists more than 1.5 million species and is remarkably flexible, occupying all
biocenoses from the arctic tundra to the deserts. Biodiversity and specific genetic and molec‐
ular organization of fungi provided background for their key role in nature, i.e., maintaining
of ecosystems’ equilibrium. One of the most important groups playing a key role in the carbon
cycle in nature is Wood Degrading Fungi, due to its ability to degrade or even mineralize lignin
– widely present and one of the most stable biopolymers. They belong to Basidiomycota and
Ascomycota and possess the unique ability to degrade components of xylem cell walls
(cellulose, hemicellulose, lignin, and compounds forming these biopolymers). According to
Anastasi et al. [1], this group is divided into white-rot fungi (WRF) or white rotters, brown-rot
fungi, and soft-rot fungi because of the appearance of rotten wood.
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The ability to degrade lignin and its aromatic compounds is mostly attributed to white-rot
fungi [2]. The white-rot decay of wood is performed by the combined action of oxidoreductive
metalloenzymes, heme peroxidases, and laccases, encoded by multigene families as well as
organic acids, secondary metabolites, and surfactants secreted by WRF [3]. This assembly is
considered the Lignin Modifying System (LMS) [4]. It should be mentioned that extracellular
ligninolytic enzymes (laccases, lignin peroxidases, manganese peroxidases, and versatile
peroxidases) are nonspecific and can act both alone as well as using a redox mediator that
enhances the range of potential substrates and provides the possibility of effective oxidation
of xenobiotics. The WRF also produces reactive oxygen species (ROS) such as superoxide anion
radical (O2

-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-) [5]. WRF, their LMS and
ROS are involved in the degradation of lignin and carbohydrate components of wood
commonly accomplished by production of carbon dioxide and water. Both WRF and LMS are
capable of in vitro oxidizing and degrading a broad range of xenobiotics: polycyclic aromatic
hydrocarbons (anthracene, benz[a]pyrene, naphthalene, and phenanthrene); polychlorinated
phenols (2,4-di-, 2,4,5-, and 2,4,6-tri-, and pentachlorophenols), chlorinated guaiacol and
benzoate derivatives, 2,4,6-trichlorophenoxyacetate, and chlorinated biphenyls; stable
polymers (polyacrylate, polyacrylamide, polycaprolactam, and polyethylene), 2,4-dichloroa‐
niline, dioxins, explosives nitrates, dyes. The degradation of xenobiotics by WRF as well as
enzymatic aspects of these processes is well documented and summarized in several recent
reviews [1,6-10]. However, there are contradictory data reported on the role of ligninolytic
enzymes in pesticide degradation. There was no relationship between WRF degradation of the
dye Poly R-478, a presumptive test for ligninolytic potential, and degradation of the highly
available pesticides, diuron, metalaxyl, atrazine or terbuthylazine in liquid culture [11].
Moreover, it was also shown that no degradation of the herbicide picloram by Ganoderma
lucidun and Trametes sp. occurred under liquid stationary conditions in spite of the fact that
both extra- and intracellular laccases were produced and, in the case of Trametes sp., the enzyme
production level improved especially for secreted laccase [12].

Recent findings have highlighted the molecular aspects of ligninolytic enzymes’ functioning
[13-15]. Genes-encoding ligninolytic enzymes of the white-rot fungi have been found to
undergo differential regulation in response to different environmental signals and stimuli such
as carbon and nitrogen concentration in cultural media, presence of xenobiotics and heavy
metals, temperature regime, and various lengths of daylight. The analysis of MnP, LiP, and
laccase gene promoter regions revealed the presence of xenobiotic response mechanism (XRE
– xenobiotic responsive element), suggesting that these enzyme expressions can be similar in
the presence of xenobiotics [15]. It was shown that compounds such as paracetic acid, ethanol,
sodium arsenite, 2,4-dichlorophenol, and N,N-dimethylformamide enhanced the MnP
production [16]. Moreover, a list of available aromatic compounds including xenobiotics (1-
hydroxybenzotriazole, 2,5-xylidine, o-toluidine, 3,5-dihydroxytoluene, dimethylphenol,
caffeic acid, caffein, guaiacol, hydroquinone, etc.) that demonstrated the similar effect on
laccase production was generated by Piscitelli et al. [17]. The data available confirmed that
regulation of the expression of genes-encoded ligninolytic enzymes is a highly complex
process. However, the constant progress in molecular and genomic techniques gave new
insights on the role of regulating elements in the differential expression of ligninolytic enzymes
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in WRF. Further studies will elucidate the mechanisms of ligninolytic enzyme transcriptional
regulation and provide deeper understanding of this complicated process.

Thus, the potential of ligninolytic enzymes in degradation of herbicides has not been well
characterized yet, especially at the molecular level. Most of the data available correspond to
the studies of different herbicide degradation by WRF, their individual ligninolytic enzymes
and oxidative enzymes – redox mediator systems that are successful or less successful
[6,9,10,18-21]. Few attempts have been made to propose the mechanisms of pesticide degra‐
dation (based on pentachlorophenol degradation pathways and ligninolytic enzymes action).
The aim of this review is to summarize the data about herbicide degradation by WRF and their
ligninolytic enzymes.

2. Modern herbicides and common regularities of their transformation

Approximately 2 million tons of pesticides are used worldwide each year [22] and play a
significant role in modern agricultural practices. Approximately half of this volume is
herbicides that are routinely applied to crops at rates varying from g to kg ha−1. In 2010, about
907 million kg of active ingredients of herbicides was applied in the world (FAO data), and
this figure continues to grow. 2019 estimates demonstrate that the herbicides market will
experience both the highest growth rate as well as the highest volume traded in the next years
as compared with other pesticides. The expected annual growth rate of herbicides for the given
period is computed to be 6.1% [23].

Although attempts to reduce pesticide use through organic agricultural practices and the use
of other technologies continue, direct and indirect exposure to pesticides is still an important
health risk factor. About one-third of the agricultural products are produced by using
pesticides [24]. Without pesticide application the loss of fruits, vegetables, and cereals from
pest injury would reach 78%, 54%, and 32%, respectively [25].

The emergence of herbicide-resistant (HR) genetically engineered crops in 1996 made it
possible for farmers to use a broad-spectrum herbicide, glyphosate, in ways that were
previously impossible. From 1996 through 2011, 0.55 billion hectares of HR corn, soybeans,
and cotton were grown in the USA, and in 2011, an estimated 94% of the soybean area planted,
72% of corn, and 96% of cotton were planted to HR varieties, respectively, which led to a 239
million kg increase in herbicide use [26].

Priority pesticides vary significantly for different regions and crops, and have evolved with
time. The era of organic synthetic pesticides started approximately 70 years ago from DDT,
2,4-D, and such compounds as HCH, dieldrin were added to the most actively used com‐
pounds at the second wave. The assortment of modern pesticides is highly variable in
trademarks and based on relatively wide (but much shorter) row of successfully commercial‐
ized active ingredients. However, the bulk of the world market is formed by a very small
number of compounds, even taking into consideration their variability for different regions
(really – for main crops of these regions). Atrazine, glyphosate, acetochlor, metolachlor,
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tefluthrin, cyfluthrin, and, maybe, mesotrione should be considered as priority pesticides for
environmental/health risks due to their wide application as protection tools in cereal agricul‐
ture. It should be noted, however, that the integral impact of two parameters, i.e., manufac‐
turing volume and toxicity of active compounds, determines danger of different agrochemicals
and necessity in their efficient decontamination.

Only a lesser part of applied pesticides reaches the target organism, with the remainder being
deposited on the soil and nontarget organisms, as well as moving into the environment [27].
The metabolic fate of pesticides is dependent on their physico-chemical characteristics, field
abiotic conditions, and plant and microbial communities. Transformation of pesticides
includes abiotic processes (such as photolysis, hydrolysis, oxidation, and rearrangements) and
chemical/biological reactions. The variety of biotransformation processes for herbicides should
be considered in connection with specific features of the microenvironments in and near target
organisms involved into metabolic pathways. So the key stage for determining further
biotransformation of herbicides is their adsorption (and adsorption of their intermediate
metabolites) to soil and soil colloids. These processes are highly important to regulate the
dynamics of action for modern herbicide preparations. The ratio between free and adsorbed
forms of herbicides determines the rate of their abiotic transformation. Nevertheless, enzy‐
matic transformation (i.e., biotransformation) is the major driver of detoxification.

The classic concepts of pesticide metabolism [28,29] divide their transformation into three
phases. In the first phase, the parent compounds are transformed through oxidation, reduction,
or hydrolysis to more water-soluble and usually less toxic products. As a whole, oxidation
(hydroxylation, dealkylation, and deamination), hydrolysis (esters, amides, and nitriles) and
reduction reactions are considered as main factors for this phase. The main process of the
second phase is the conjugation of the obtained derivatives to a sugar (typically glucose),
glutathione, or amino acid with further increased water solubility, reduced toxicity, and
support of internal transport of the metabolite for final transformation. The third phase
provides further conjugation and results in nontoxic final products of metabolic pathways of
the pesticides.

An important factor in the transformation of pesticides in soil is a complementary action of
plants and microorganisms on them. The roles of plants may be simply characterized as
reduction of toxicity, whereas microorganims are responsible for deep destruction and
mineralization. The line of enzymes and catalyzed reactions for microorganisms is much wider
as compared with plants. Several processes, such as dehalogenation or C-P bond cleavage, are
associated mainly with microbial metabolism of pesticides. (On the other hand, however,
glutathione conjugation is a typical tool for plant transformation of pesticides.) The common
opinion in modern remediation biotechnology is that the tasks of detoxification cannot be
solved at the plant level alone and should be based on the detailed analysis of the most efficient
microbial participants of this process. A significant additional factor of interest concerning
microbial detoxification is the lower cost of such technologies as compared with the alternative
ones [30].

Pathways of pesticide destruction have been described in many works, both at the levels of
the species responsible and the enzymes involved. Currently, the existing information is
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systematized in several sources, and Biocatalysis/Biodegradation Database of the University
of Minnesota (EAWAG-BBD; http://eawag-bbd.ethz.ch) seems the most informative available
tool. This database contains information on microbial biocatalytic reactions and biodegrada‐
tion pathways for primarily xenobiotics. This permanently maintained and updated system
collects data about hundreds of pathways, enzymes, and microorganisms, thousands of
reactions and compounds of environmental interests. In addition, this database contains two
supporting tools. The Pathway Prediction System predicts microbial catabolic reactions using
substructure searching, a rule-base, and atom-to-atom mapping. The biotransformation rules
are based on reactions found in the EAWAG-BBD or in the scientific literature. The Biochemical
Periodic Table provides an overview of microbial interactions with different chemical ele‐
ments. Individual element pages contain a summary of published data about microbial
interactions with the selected element.

It should be noted that efficient recommendations for microbial remediation require integral
knowledge about potential of individual enzymatic reactions and specific features of their
interactions for different microbial species. Current information about genetic regulation of
coupled reactions may significantly improve bioremediation technologies as well as contribute
to empiric data about multistep detoxification with the use of different microorganisms. That
is why the further consideration of fungal destruction of herbicides will provide data on
integrated potential of multienzyme systems from different detoxificators rather than data
about elementary catalytic reactions, but first of all about.

3. Effects of herbicides on soil fungi

There are two main teqniques of herbicide application in the field. The first one is foiliar spray,
and the second is soil application. In case with soil application, the herbicide is introduced
directly into the soil and so can affect soil microorganisms. However, even in case with foliar
application, significant amounts of these chemicals reach the soil. Therefore, although
herbicides are very useful in farming, under certain circumstances they may turn into pollu‐
tants, affecting soil microflora and deteriorating the quality of soil if there are sensitive
organisms and/or if the degradation products are toxic. Among various indicators used in
monitoring soil biological activity, microbial community structure seems to be the most
preferred due to its sensitivity to the environmental changes. To address these concerns, the
impacts of herbicides on soil microbial communities are widely studied and discussed.

In general, the recommended field rate of herbicide had no major effects on soil microorgan‐
isms, but excessive doses retard the reproduction rate of some groups of microflora and may
reduce enzyme activity and populations of various microorganisms in soil, including fungi
(Table 1) [31-35]. No significant changes in soil microflora were detected using phospholipid
fatty acid (PLFA) profiles’ analysis after atrazine, bentazon, or glyphosate application by Banks
and coauthors [35]. Crouzet and coauthors [33] tested the herbicide mesotrione in chernozem
soil at the rates from 0.45 to 45 mg/kg and recorded only small genetic structural shifts in the
bacterial and fungal communities. Maximum dissimilarity of the bacterial and fungal genetic
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structures between control and herbicide-treated soil did not exceed 12% and 28%, respec‐
tively. Martinez et al. [36] did not demonstrate any significant changes in the multiplication
of bacteria and fungi following an application of sulfentrazone. Allievi and Gigliotti demon‐
strated no significant differences in number of aerobic bacteria in soil attributable to cinosul‐
furon treatment at the field rate 0.42 μg/kg after 1 and 4 weeks of incubation under laboratory
conditions [31]. Possible effects of the herbicide on the specific group of microorganisms of the
microbial community resulting in eventual counterbalance by the development of another
group were further tested. To execute this, the individual microbial strains were isolated and
their sensitivity in relation to cinosulfuron was tested. Among eighteen studied strains of
aerobic bacteria from uncultivated soil, a fourth of the tested strains underwent some growth
inhibition in the presence of the herbicide, and for one strain total and permanent inhibition
was observed. In the case of fungi, however, only two of seventeen fungi strains underwent
temporary growth inhibition. In the case of isolates from agricultural soil, neither bacterial nor
fungal isolates were sensitive to the studied herbicide. The herbicide cinosulfuron was
concluded to negatively affect only a few aspects of the microbial community in soil ecosys‐
tems, even at concentrations higher than those currently in use. Baćmaga and coauthors [37]
also reported on the absence of adverse effects of the herbicide metazachlor at the recom‐
mended dose (0.3 mg/kg) on soil microorganisms including oligotrophic bacteria, Azotobact‐
er spp. bacteria, organotrophic bacteria, actinobacteria, and fungi. When applied at excessive
doses, metazachlor inhibited significantly the reproduction of all analyzed microorganisms,
including fungi.

Herbicide Effect at field rate Effect at excessive rates Ref.

Auxin growth regulators

2,4-D No effect Stimulation [38]

Amino acid biosynthesis inhibitors

EPSP synthase inhibitors

Glyphosate

No effect nd [35]

Stimulation nd [39]

No effect No effect [40]

ALS inhibitors

Cinosulfuron No effect Temporary growth inhibition or no effect [31]

Imazethapyr No effect Inhibition [38]

Metsulfuron-methyl Stimulation nd [41]

Nicosulfuron Inhibition
Inhibition at intermediate doses, no effect

at high doses
[42]

Sulfosulfuron
Stimulation Inhibition [43]

No effect nd [44]

Glutamine synthetase inhibitors

Glufosinate Inhibition Inhibition [45]

Photosynthesis inhibitors
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Herbicide Effect at field rate Effect at excessive rates Ref.

Systemic herbicides inhibiting PSII

Atrazine No effect nd [35]

Isoproturon
Inhibition nd [46]

Inhibition nd [44]

Linuron No effect No effect [47]

Metribuzin No effect nd [44]

Contact herbicides inhibiting PSII

Bentazon No effect nd [35]

Contact herbicides inhibiting PPO

Brominal
Inhibition Inhibition [32]

Temporary inhibition Temporary inhibition [48]

Sulfentrazone No effect nd [36]

Lipid biosynthesis disrupters (ACC inhibitors)

Clodinafop No effect nd [44]

Pigments biosynthesis inhibitors (HPPD inhibitors)

Mesotrione No effect
Slightly modified the fungal genetic

structures
[33]

Seedling growth inhibitors

Alachlor No effect Inhibition [49]

Butachlor Stimulation Inhibition [50]

Metazachlor No effect Inhibition [37]

Napropamide Inhibition followed by stimulation nd [51]

ACC – acetyl-CoA carboxylase; ALS – acetolactate synthase; EPSP – 5-enolpyruvylshikimate-3-phosphate; HPPD – p-
hydroxyphenylpyruvate dioxygenase; PPO – protoporphyrinogen oxidase; PSII – photosystem II
nd – no data

Table 1. Influence of different herbicides on soil fungi

The negative influence of the herbicides on fungi was also reported by Kucharski and Wysz‐
kowska [43], who tested herbicide Apyros 75 WG (a.i. sulfosulfuron), and by Zhang and
coauthors [38], who studied the effect of imazethapyr in two agricultural soils. The ratio of
fungi/bacteria in the imazethapyr-treated soil tended to decrease in the initial 15 d incubation
period when compared to the control, and then recovered after 30 d of incubation. Stimulation
of bacterial and suppression of fungal population due to isoproturon application was reported
by Nowak et al. [46]. Omar and Abdel-Sater studied the effect of soil treatment with brominal
on population counts of bacteria, actinobacteria, and cellulolytic fungi in soil and found out
that the herbicide significantly decreased the total number of cellulolytic fungi and most fungal
species while bacterial populations in soil treated with the herbicide was promoted at field
application rates and inhibited only at higher levels [32]. Pampulha et al. demonstrated a
significant decrease of soil bacteria, fungi, and actinobacteria populations 40 days after
glufosinate application [45].

The Role of White-rot Fungi in Herbicide Transformation
http://dx.doi.org/10.5772/61623

193



The evidences of no effect or positive effect of the herbicides on fungi growth were also
numerously demonstrated. Araújo et al. [39] proved that soil pollution with glyphosate
increased populations of fungi and actinobacteria while depressing counts of the other
bacteria. Kucharski and Wyszkowska [43] demonstrated a stimulating effect of sulfosulfuron
on fungi in the objects treated with the recommended dose of the herbicide 8.9 μg/kg. Treat‐
ment of soil with 2,4-D butyl ester at the extremely high dose of 1000 mg/g caused a decline
in culturable microbial counts, with the exception of fungal numbers, which increased over
the incubation time [34]. At that, when herbicide concentration increased, the Gram-negative/
Gram-positive bacteria ratio decreased dramatically in the studied soils. Soil treatment with
linuron at the dosages of 4–400 mg/kg did not change the fungal numbers significantly in two
agricultural soils as compared to the corresponding controls [47]. Sørensen et al. explained the
observed phenomenon by the presence of linuron-degrading fungi, including different species
of Cunninghamella, Mortierella, Talaromyces, Rhizopus, Rhizoctonia, and Aspergillus [52]. Along
with linuron-degrading fungi, there are some soil bacteria which are able to use herbicide as
a source of C and N, resulting in a significant increase in bacterial counts [53]. The latter is
confirmed by increased bacterial numbers in soils treated with the high dosage of linuron [47].

He et al. studied the effects of metsulfuron-methyl on soil microorganisms by the method of
microbial inoculation culture and found an inhibiting effect of the herbicide on the aerobic
heterotrophic bacteria, whereas the number of tolerant fungi increased greatly in the rhizo‐
sphere after the application of metsulfuron-methyl [41]. Impact of another sulfonylurea
herbicide, nicosulfuron, on the structure, abundance, and function of the soil microbial
community using standardized methodologies (PLFAs, taxa-specific qPCR, and enzyme
activities) was investigated by [42]. Soil concentrations of nicosulfuron exceeding 1 μg/g
resulted in significant reduction of the total PLFAs, although significant reductions of the
bacterial PLFAs were observed only at nicosulfuron concentration levels above 10 μg/g. A
different picture was evident for fungal PLFAs with significant reductions observed only at
intermediate herbicide concentration levels (1–10 μg/g) compared to the control. Besides, qPCR
analysis demonstrated that fungi showed the highest sensitivity to nicosulfuron and their
abundance was reduced even at the lowest concentration levels of the herbicide (0.25–1 μg/g).
Finally, field experiments showed that nicosulfuron applied to the field at dose rates ×1, ×2,
and ×5 of the recommended did not significantly affect either the soil microbial biomass or the
abundance of fungi and bacteria or enzymatic activity. No significant changes in fungal
numbers due to clodinafop introduction into the soil were observed by [43]. Wardle and
Parkinson [40] reported that bacterial propagules were temporarily enhanced while actino‐
bacteria and fungal propagule numbers were unaffected by glyphosate. Min et al. [50] reported
the influences of the herbicide butachlor on microbial populations, respiration, nitrogen
fixation, and nitrification and on the activities of dehydrogenase and hydrogen peroxidase in
paddy soil. The results showed that the number of actinobacteria declined significantly after
the application of butachlor at different concentrations ranging from 5.5 to 22 mg/kg, while
that of the other bacteria and fungi increased. However, at higher butachlor concentrations
the growth of fungi was retarded, and the growth of anaerobic hydrolytic fermentative
bacteria, sulfate-reducing bacteria, and denitrifying bacteria was stimulated. Treatment of soil
with another acetanilide herbicide, napropamide, resulted in decrease of populations of
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bacteria, while the populations of fungi displayed the decreasing, recovering, and increasing
trend [51].

Detailed examination of the observed effects of the herbicides on soil fungi associated with the
mode of action of herbicides (Table 1) does not reveal any interrelationships between herbicide
identity and their toxicity to fungi. Though herbicides inhibiting amino acid synthesis (ALS
and glutamine synthetase inhibitors), contact herbicides inhibiting PPO, and seedling growth
inhibitors are seemingly the most toxic, a detailed systematic study needs to be conducted to
prove or disprove this observation. Moreover, currently, no general pattern of soil microbiota
responses has been inferred regarding herbicide doses applied, exposure time, soil type, or
other environmental factors [40,54]. The latter results very likely from the fact that up to now
most studies dealing with pesticide soil microbial toxicity were performed using methods that
were not well standardized, which did not allow their comparative meta-analysis, and focused
on the independent assessment of effects on population, diversity, or functional endpoints,
which did not provide a comprehensive view of the toxicity of the pesticide [42]. Standardi‐
zation of the advanced methodologies available in soil microbial ecology is a necessary step
toward harmonization of datasets and is a prerequisite for their integration in the regulatory
framework of pesticide soil microbial toxicity assessment [55]. Standards for a number of
methods have been already developed and others are under development at the International
Standard Organisation (ISO) by TC190/SC4/WG4 and can be found elsewhere [42]. These
include:

• Measurement of enzyme activity patterns in soil samples using fluorogenic substrates in
micro-well plates (ISO/TS 22939)

• Determination of soil microbial diversity. Part 1: method by phospholipid fatty acid analysis
(PLFA) and phospholipid ether lipids (PLEL) analysis (ISO/TS 22843 part 1)

• Determination of soil microbial diversity. Part 2: method by phospholipid fatty acid analysis
(PLFA) using the simple PLFA extraction method (ISO/TS 22843 part 2)

• Method to directly extract DNA from soil samples (ISO11063)

• Estimation of abundance of selected microbial gene sequences by quantitative real-time PCR
from DNA directly extracted from soil (ISO/DIS 17601)

Therefore, there is a global need for more complex investigations of the functional diversity
responses and degrading activity of soil microbial communities in order to provide deeper
insight for herbicide risk assessment. The combined utilization of the above standardized
molecular and biochemical methods that provide data of different resolution levels guarantee
an accurate estimation of pesticide-driven effects on soil microbes [42].

4. Transformation of the herbicides by white-rot-fungi

It is well documented that a wide range of pollutants including pesticides are transformed and
degraded by WRF: pentachlorophenols, isoproturon, derivative of isoxaflutole, atrazine,
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simazine, propazine, lindane, atrazine, diuron, terbuthylazine, metalaxyl, DDT, dieldrin,
aldrin, heptachlor, chlordane, etc. [11,56-65]. This list may be expanded given the strong
evidence for WRF degradation potential toward different classes of pollutants. The data on
herbicide degradation by WRF are summarized partly in Table 2. It should be mentioned that
a large number of works were performed using stationary conditions on liquid media and
solid system fermentation conditions. However, there are contradictory data about level of
herbicide degradation, role of ligninolytic enzymes in this procedure, and mechanism of
degradation as well.

Fungus Herbicide
Cultivation

Disappearance, % References
Type Days

Agrocybe semiorbicularis

Atrazine

Stat

42 40

[11]Diuron 42 70

Terbuthylazine 42 60

Auricularia auricola

Atrazine

Stat

42 16

[11]Diuron 42 10

Terbuthylazine 42 37

Cerrena maxima Atrazine Sub 40 83 [66]

Cerrena maxima&
Coriolus hirsutus

Atrazine Sub 40 78 [66]

Coriolopsis fulvocinerea Atrazine Sub 40 88 [66]

Coriolus hirsutus Atrazine Sub 40 91 [66]

Coriolus versicolor

Atrazine

Stat

42 86 [11]

Chloronitrofen 12 30 [67]

Diuron 42 99 [11]

Nitrofen 12 80 [67]

Terbuthylazine 42 63 [11]

Dichotomitus squalens

Atrazine

Stat

42 25

[11]Diuron 42 21

Terbuthylazine 42 52

Flammulina velupites
Diuron

Stat
42 6

[11]
Terbuthylazine 42 30

Ganoderma lucidum

Bentazon (5 mM)
Stat

10 88 [68]

Bentazon (20 mM) 10 55 [69]

Bentazon (50 mM) Sol 10 90 [68]

Diuron (30 μM)
Stat

10 55 [69]

Picloram 10 0 [12]

Hypholoma fasciculare

Atrazine

Stat

42 57

[11]Diuron 42 71

Terbuthylazine 42 97

Phanerochaete chrysosporium Atrazine
Stat 14 0 [57]

Stat 10 60 [70]
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Fungus Herbicide
Cultivation

Disappearance, % References
Type Days

42 20 [11]

Bentazon Sol
33 55 [71]

20 65 [72]

Diketonitrile (derivative of
isoxaflutole)

Stat 15 42 [74]

Diuron Stat
10 94 [75]

42 3 [11]

Isoproturon Bio-beds
28 78 [76]

100 >99 [76]

MCPA Sol 20 75 [73]

Propazine 8 45 [70]

Simazine 8 5 [70]

Terbuthylazine
42 53 [11]

8 95 [70]

Pleurotus ostreatus

Atrazine

Stat

42 15

[11]Diuron 42 12

Terbuthylazine 42 30

Stereum hirsutum

Atrazine

Stat

42 57

[11]Diuron 42 80

Terbuthylazine 42 88

Trametes sp. Picloram Stat 10 0 [12]

Trametes versicolor
Diketonitrile (derivative of

isoxaflutole)
Stat 15 34 [74]

Stat – Stationary conditions on liquid media
Sub – Submerged cultivation on liquid media
Sol – Solid-state cultivation

Table 2. Degradation of herbicides by white-rot fungi

Several fungi, such as Agrocybe semiorbicularis, Auricularia auricula, Coriolus versicolor, Dicho‐
mitus squalens, Flammulina velupites, Hypholoma fasciculare, Pleurotus ostreatus, Phanerochaete
velutina, and Stereum hirsutum have shown the ability to degrade various herbicides like
atrazine, diuron, and terbuthylazine with different efficiencies [72]. Coriolus versicolor, Hypho‐
loma fasciculare, and Stereum hirsutum degraded more than 86% of diuron, atrazine, and
terbuthylazine in 6 weeks. They were also the most active in ligninolytic enzymes’ production.
However, the ability of WRF to degrade aromatic herbicides, diuron, atrazine, and terbuthy‐
lazine, did not correlate with their ligninolytic activity determined in the Poly R-478 decolor‐
ation test (which is used as an indicator of ligninolytic activity). The possible explanation of
these results was the difference in LME patterns produced by fungi in liquid cultures.
Interesting that under field trials the most effective strain S. hirsutum was inactive in herbicide
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degradation and the other strains C. versicolor and H. fasciculare demonstrated 30% of chloro‐
pyriphos degradation in 6 weeks [72].

White-rot fungi Phanerochaete chrysosporium and Trametes versicolor converted up to 35–40% of
diketonitrile (a soil transformation product of the herbicide isoxaflutol) to inactive benzoic acid
analogue after 15 days under stationary conditions on liquid media [74]. The level of lignino‐
lytic enzymes, such as laccases, produced during fermentation seemed to be correlated with
herbicide degradation, confirming the role of these enzymes in degradation processes.
However, the authors underlined that induction of laccase production sixfold via addition of
2,5-xylidine did not lead to any significant diketonitrile cleavage increase.

It was shown that Coriolus hirsutus, Cerrena maxima, Coriolopsis fulvocinerea, and co-cultured
Coriolus hirsutus/Cerrena maxima [66] can degrade atrazine under submerged cultivation; the
herbicide removal was 77–91% after 40 days’ cultivation. It is interesting to mention that
negligible amounts of atrazine were found to be absorbed on mycelium. The activity of laccase
was rather high, allowing the proposal of laccase participation in atrazine degradation by these
fungi. This hypothesis was supported by the study of atrazine degradation in the presence of
laccase inducers (guayacol and syringaldezine) under submerged cultivation [77]. The
efficiency of herbicide degradation was higher in induced cultures by 78–98% and the highest
level of atrazine removal was achieved for Coriolopsis fulvocinerea using guaiacol as an inducer.

Hiratsuka et al. [67] reported that Coriolus versicolor IFO 30340 degraded 30% of chloronitrofen
(CNP) and 80% of nitrofen (NIP) after 12 days’ cultivation under stationary conditions on
liquid media. The herbicide degradation rate depended on the nitrogen concentration in the
media and was higher under low nitrogen conditions, suggesting that the lignin degradative
system was responsible for the herbicide degradation. However, LiP, MnP, and laccase as well
as culture filtrate did not oxidize herbicides. Neither chloronitrofen nor nitrofen were oxidized
by the laccase – redox-mediator system using HBT, which is a well-known laccase redox-
mediator. These results draw the conclusion that extracellular ligninolytic enzymes were not
involved in the initial step of CNP or NIP degradation by Coriolus versicolor IFO 30340. The
sequential identification of products formed during the metabolism of CNP and its intermedi‐
ates by C. versicolor enabled the authors to propose four different pathways for the degradation
of CNP: aromatic hydroxylation, oxidative dechlorination, reductive dechlorination, and the
reduction of the nitro group to amine. The aromatic hydroxylation to form 2,4,6-trichloro-3-
hydroxy-4′-nitrodiphenyl ether and the oxidative dechlorination to form 2,4-dichloro-6-
hydroxy-4′-nitrodiphenyl ether were assumed to catalyze by cytochrome P450-type enzyme(s)
because these paths were efficiently shut off by the exogenous addition of piperonyl butoxide,
a P450 inhibitor. The conversion of CNP to NIP by Coriolus versicolor IFO 30340 should be
reductive dechlorination. Reductive dechlorination reactions were involved in the degrada‐
tion of pentachlorophenol by P. chrysosporium [60]. CNP was also converted to 2,4,6-tri‐
chloro-4′-aminodiphenyl ether by C. versicolor. The reductive dechlorination and nitro-
reduction reactions were also found as initial reactions in CNP degradation, which were
enhanced upon the addition of the cytochrome P450 inhibitor. Aromatic hydroxylation and
oxidative dechlorination were also observed during the fungal conversion of NIP; however,
the products formed were not identified – they were assumed to be either 2, 4-dichloro-3-
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hydroxy-4′-nitrodiphenyl ether or 2, 4-dichloro-6-hydroxy-4′-nitrodiphenyl ether and 2-
chloro-4-hydroxy-4′-nitrodiphenyl ether or 2-hydroxy-4-chloro-4′-nitrodiphenyl ether,
respectively. The fungal conversion of NIP was also effectively inhibited by piperonyl
butoxide.

Based on the result obtained, the authors assumed that cytochrome P450 played an important
role in lowering the ionization potential of environmentally persistent aromatics and in
providing suitable substrates for ligninolytic one-electron oxidizing enzymes for effective
degradation. When diphenyl ether, 4-chlorodiphenyl ether, and 4-nitrodiphenyl ether were
added to the fungal culture, 4-hydroxydiphenyl ether, 4-chloro-4′-hydroxydiphenyl ether, and
4-nitro-4′-hydroxydiphenyl ether were identified as the major products, respectively. 4-
chlorophenol and 4-nitrophenol were detected in trace amounts from 4-chlorodiphenyl ether
and 4-nitrodiphenyl ether, respectively, but the counterpart hydroquinone was not observed.
These data suggest that the formation of phenolic products from either the A or B ring of CNP
might be derived via a different pathway, and that the direct ether cleavage might not have
occurred. These findings gave evidence that fungi degraded herbicides via different pathways
using their multiple metabolic systems.

Ganoderma lucidum was shown to be resistant to the herbicides diuron and bentazon [69]:
the upper limits were 80 μM and 20 mM, respectively. This finding can be explained by
higher toxicity of  the metabolites  formed during diuron transformation.  It  was reported
previously that some of the metabolites resulting from fungal transformation of diuron may
be even more toxic than the parent compound [78]. G. lucidum was able to efficiently remove
55%  of  diuron  and  88%  of  bentazon  after  10  days’  cultivation  in  liquid  cultures.  Both
bentazon and diuron strongly improved the production of  laccase by the fungus induc‐
ing one of the two laccase isoforms. Native PAGE analysis of  the extracellular enzymes
revealed that the improvement in the laccase activity in response to the herbicides was not
due to the expression of a new laccase, but that it  was due to the overproduction of an
already existing isoform in the noninduced cultures.  Similar  results  were obtained with
Trametes  versicolor  and  Abortiporus  biennis  [79],  where  their  constitutive  laccases  were
overproduced in the presence of paraquat, a quaternary nitrogen herbicide. The electropho‐
retic  analysis  of  extracellular  enzymes  from  G.  lucidum  showed  that  laccase1  was  the
dominant enzyme under noninduced conditions. Interestingly, the herbicides induced only
the  laccase2  isoform  while  the  laccase1  was  suppressed  in  these  cultures.  Such  results
suggest that laccase2 is, probably, the isoform more intensely involved in the defense system
of the fungus, considering that both herbicides strongly inhibited the fungus growth. These
observations show that these types of enzymes have, at least in part, an important role in
the degradation of pollutants under in vivo conditions.

The comparative study of herbicide bentazon degradation by Ganoderma lucidum in liquid and
solid-state cultures using corn cob as substrate has been performed [68]. The fungus was more
resistant to herbicide and more efficient in its degradation in solid-state cultures in comparison
with liquid cultures: 50 mM against 20 mM and 90% against 55%, respectively. The authors
proposed two, not mutually exclusive, possible explanations: a lower availability of herbicide
due to its adsorption to the insoluble substrate corn cob for this observation and the higher
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activities of both laccase and Mn peroxidase in solid-state cultures compared to the liquid
cultures, where the high laccase activity was detected. However, no metabolite products were
found in the combined aqueous and methanolic extracts. The G. lucidum crude filtrates
containing laccase and Mn peroxidase were shown to degrade bentazon in vitro. The experi‐
ments with addition of Mn2+, ABTS, Tween 80, and H2O2 to crude filtrates demonstrated
synergisms in bentazon degradation, suggesting that both laccase and Mn peroxidase were
involved in its degradation. It is well known that ABTS mediates the oxidation of non-phenolic
compounds of lignin [80] and the presence of unsaturated fatty acids (Tween 80) improves the
oxidation process catalyzed by Mn peroxidases and laccases due to the production of lipid
peroxyl or alkoxyl radicals [81]. The hypothetical mechanism of bentazon degradation may be
the following Mn peroxidase and laccase generated lipid peroxyl or alkoxyl radicals; in the
presence of these radicals Mn peroxidase oxidizes Mn2+ to Mn3+, which in turn oxidizes
bentazon, whereas laccase uses ABTS as redox-mediator for bentazon oxidation. However, no
degradation of picloram G. lucidum and Trametes sp. were observed in liquid cultures, maybe
due to its high substitution of the aromatic ring [12]. This herbicide enhanced the production
of laccase by Trametes sp., whereas the enzyme production by G. lucidum was suppressed. The
authors assumed that enzyme production inhibition could be occurring at the mRNA level
after picloram has entered the cell or by enzyme modification before or after secretion [12].
The exposition of G. lucidum and Trametes sp. to picloram revealed a peculiar mechanism of
transitory bioaccumulation of herbicide by both fungi.

The most studied WRF is P. chrysosporium, which was shown to degrade a wide range of
herbicides under different conditions. MCPA and bentazon were degraded by P. chrysospori‐
um at 65% and 75%, respectively, in 20 days [73]. P. chysosporium degraded isoproturon
belonging to phenylurea groups [73,76], atrazine [70], and also diuron [82]. However, accord‐
ing to [57], no atrazine degradation was observed by this fungus in liquid cultures. The
degradation efficiency of P. chrysosporium was higher in solid-state cultures in comparison with
liquid ones [71,73]. Two mechanisms of herbicides degradation were proposed: the action of
ligninolytic enzymes and the action of intracellular enzymes in particular cytochrome P450.
In [75], the degradation of diuron by P. chrysosporium was studied including the identification
of products formed and the evaluation of cytochrome P450’s role. Two findings were of great
importance: the considerable amounts of diuron, DCPMU [1-(3,4-dichlorophenyl)-3-methyl‐
urea], and DCPU [1-(3,4-dichlorophenyl)urea] found in fresh mycelia and the inhibition of
diuron degradation by ABT (1-aminobenzotriazole), a cytochrome P450 inhibitor. These
results confirmed the intracellular mechanism of this herbicide degradation resulting in N-
demethylation. However, after 5 days concentrations of DCPMU and DCPU were higher in
cultural filtrates than in mycelia extracts suggesting possible involvement of lignolytic
enzymes in degradation of these metabolites. According to da Silva Coelho-Moreira et al. [75],
enzymatic crude extracts supplied with combinations of veratryl alcohol H2O2 and Mn2+ did
not degrade the herbicide, it is possible that DCPMU and DCPU can be further transformed
by MnP.

P. chrysosporium is also able to transform atrazine, its transformation product and other s-
triazine herbicides [70]. The first and main step in the chlorinated-s-triazine degradation
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pathway by the fungus was mono-N-dealkylation. Hydroxyatrazine was the main degrada‐
tion product found in soils treated with atrazine and in liquid cultures. P. chrysosporium actively
transformed hydroxyatrazine to an unknown compound that accumulated in the culture
medium. It was established that the presence of both alkyl groups and chlorine at the 2-position
are necessary for the mono N-dealkylation of atrazine by P. chrysosporium. Consequently,
formation of desethylhydroxyatrazine in liquid cultures should result from hydrolysis of
deethylatrazine. Experiments with terbuthylazine, atrazine, and simazine also show that the
removal of the ethyl side chain is the preferential reaction, and might depend on the mass of
the second alkyl group. In other words, compounds with a high-mass group linked to one
amino substituent are expected to undergo a higher N-dealkylation affecting the other chain.
The symmetric compounds propazine and simazine were also degraded at a slower rate than
atrazine. Neither LiPs nor MnPs transformed atrazine and its N-dealkylated metabolites. It
was shown that atrazine N-dealkilation decreased in the presence of cytochrome P450
inhibitor. Moreover, herbicide degradation was supported by mycelium. Therefore, the
cytochrome P450 involvement in atrazine degradation was assumed. These data are in line
with previously published study of atrazine degradation by Pleurotus pulmonarius, which
involved such enzymes as lipoxygenase, peroxidase, and cytochrome P-450 [83]. Mn2+, which
activates these enzymes, stimulated atrazine transformation to N-dealkylated and propylhy‐
droxylated metabolites whereas antioxidants and inhibitors of lipoxygenase and peroxidase
(nordihydroguaiaretic acid) as well as cytochrome P-450 (piperonyl butoxide) suppressed its
degradation.

To analyze data presented in Table 2, rate of herbicide disappearance was calculated as the
ratio of disappearance (%) to the duration of degradation (days), followed by an average value
calculation for every herbicide (Fig. 1). Taking into consideration the effect of cultivation
conditions on herbicide degradation by fungi, only data on stationary conditions on liquid
media were treated this way.
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Figure 1. Relationship between rate of disappearance of herbicides and their structure.
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Obtained results correspond well to the study [70], where it was established that the presence
of alkyl groups is necessary for the degradation of s-triazine herbicides by P. chrysosporium via
mono N-dealkylation. Moreover, ability of WRF fungi to degrade s-triazines seems to enhance
along with increase in the amount of exactly branched alkyl groups. However, detailed
quantitative structure–degradation activity studies should be conducted to prove or disprove
this preliminary observation. Another important conclusion is a marked negative influence of
chlorine in the herbicide molecule on the degradation rate, which can be seen from the
comparison of degradation rate of nitrofen (one atom of chlorine) and clornitrofen (three atoms
of chlorine) and the highest degradation rate of bentazon, which is the only chlorine-less
herbicide in the presented range (Fig. 1). Therefore, data presented in Fig. 1 demonstrate clearly
the barest necessity of further QSAR studies. Together with knowledge on main enzymatic
pathways of herbicide degradation, the latter will improve significantly the preliminary
assessment of degradation ability of WRF in relation to the herbicide of known structure.

The contradictory data about participation of ligninolytic enzymes in the herbicide degrada‐
tion and transformation did not allow establishing their precise role in these processes [18,75,
81,84,85,86]. We summarized the data about efficiency of individual ligninolytic enzymes, their
mixtures, and enzymes – redox-mediator systems in herbicide degradation in Table 3. As can
be seen, no degradation of diketonitrile, diuron, atrazine, chloronitrofen, nitrofen, glyphosate
was observed for MnP and LiP crude extracts and purified enzymes from P. chrysosporium,
Trametes versicolor, and Coriolus versicolor even in the presence of redox-mediators
[67,69,70,74,75,81]. However, MnP from P. chrysosporium degraded Irgarol 1081 up to 37% after
24 h [87] and LiP from P. chrysosporium degraded bentazon up to 100% after 4 h [71]. Moreover,
bentazon was effectively transformed by laccase with catechol, laccase, and MnP crude extracts
with redox-mediator ABTS, recombinant MnP [69,71,88]. Analysis of the data summarized in
Table 3 draw to the conclusion that MnP, laccase, and laccase – redox-mediator systems are
the most efficient tools for degradation of a wide range of herbicides – diketonitrile, glyphosate,
Pesticide Mix 34, chloroxuron, atrazine, and dymron [74,81,86,89], however, with few excep‐
tions, namely, choronitrofen and nitrofen [67]. It should be underlined that efficiency of laccase
– redox-mediator systems toward different herbicides strongly depends on the redox-mediator
used, which in turn depends on mechanisms of the mediators’ oxidation by enzyme and the
reactivity of the mediators’ intermediates.

Enzyme Herbicide Redox mediator
Reaction

conditions

Duration

h

Disappearance,

%
Fungus Ref.

Laccase

Atrazine

No

25°C, pH 4.5 240

0

Coriolopsis fulvocinerea

Koroleva &

Gorbatova

(unpublishe

d data)

[Ru(bpy)2Cl2] 0

[Ru(phpy)(phen)2]PF6, 0

HBT 70

Syringaldezine 0

Bentazon Catechol 25°C, pH 4.0 0.5 100 Polyporus pinsitus [88]

Chloronitrofen
No 0

Coriolus versicolor [67]
HBT 0

Herbicides, Physiology of Action, and Safety202



Enzyme Herbicide Redox mediator
Reaction

conditions

Duration

h

Disappearance,

%
Fungus Ref.

Diketonitrile

(derivative of

isoxaflutole)

ABTS pH 3.0
0.3–0.4 nmol /(h

unit)
Trametes versicolor [74]

Dymron

No 37°C 24 0

Trametes versicolor [89]

ABTS

60°C 24

>90

HBA 90

MeHBA 90

NNDS >90

Glyphosate

No
pH 6.0, Mn2+ +

H2O2 + Tween 80
24

90

Trametes versicolor [81]

No
pH 6.0, Mn2+ +

Tween 80
90

Nitrofen
No 0

Coriolus versicolor [67]
HBT 0

Laccase,

immobiliz

ed

Chloroxuron

No

30°C, pH 4.5

0.5 80

Trametes versicolor [86]
3-HAA 0.5 80

HBT 0.3 100

Syrinaldehyde 0.5 80

LiP

Atrazine No

30°C, pH 5,

veratryl alcohol +

Mn2+ + H2O2

1 0
Phanerochaete

chrysosporium
[70]

Bentazon No
pH 3.5, veratryl

alcohol + H2O2

4 ∼100
Phanerochaete

chrysosporium
[71]

Chloronitrofen

No 0 Coriolus versicolor

[67]
No 0

Phanerochaete

chrysosporium

Glyphosate No

pH 3.0, veratryl

alcohol + Mn2+ +

H2O2 + Tween 80

24 0 Trametes versicolor [81]

Nitrofen

No 0 Coriolus versicolor

[67]
No 0

Phanerochaete

chrysosporium

MnP

Atrazine No

30°C, pH 5,

veratryl alcohol +

Mn2+ + H2O2

1 0
Phanerochaete

chrysosporium
[70]

Bentazon No
pH 4.5, Mn2+ +

Tween 80
168 ∼700 Aspergillus oryzae [71]

Chloronitrofen No 0 Coriolus versicolor [67]

Glyphosate No
pH 4.5, Mn2+ +

H2O2 + Tween 80
24 100 Nematoloma frowardii [81]
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Enzyme Herbicide Redox mediator
Reaction

conditions

Duration

h

Disappearance,

%
Fungus Ref.

No
pH 4.5, Mn2+ +

Tween 80
100

Irgarol 1051 No

30°C, Mn2+ +

glucose + glucose

oxidase

24 37
Phanerochaete

chrysosporium
[87]

Nitrofen No 0 Coriolus versicolor [67]

Pesticide Mix 34 No

35°C, pH 4.5,

Mn2+ + H2O2 +

Tween 80

144 20-100 Nematoloma frowardii [81]

Lac+MnP Bentazon ABTS
Mn2+ + H2O2 +

Tween 80
24 98 Ganoderma lucidum [69]

LiP+MnP

Atrazine

No

39°C, veratryl

alcohol + Mn2+ +

H2O2

24 0

Phanerochaete

chrysosporium

[57]

No

30°C, pH 5,

veratryl alcohol +

Mn2+ + H2O2

1 0 [70]

Diketonitrile

(derivative of

isoxaflutole)

No

30°C, pH 3 or 5,

H2O2

12

0

Phanerochaete

chrysosporium
[74]

1-HBT 0

3-HAA 0

ABTS 0

Diuron No

pH 3.0, veratryl

alcohol + Mn2+ +

H2O2

24 0
Phanerochaete

chrysosporium
[75]

Irgarol 1051 – derivate of s-triazine herbicide

3-HAA – 3-hydroxy-antranilic acid
1-HBT – 3-hydroxybenzotriazole
HBA – 4-hydroxybenzoic acid
MeHBA – methyl-4-hydroxybenzoic acid
NNDS – 1-nitroso-2naphtol-3,6-disulfonic acid
Laccase iimmobilized – Laccase iimmobilized on an electrospun zein polyurethane nanofiber via cross-linking with
glutaraldehyde

Table 3. Degradation of herbicides by ligninolytic enzymes produced by white-rot fungi

In the study of atrazine degradation with purified laccase from Coriolopsis fulvocinerea, no
herbicide degradation was observed (Koroleva & Gorbatova, unpublished data). The screen‐
ing of redox mediators (syringaldezine, [Ru(phpy)(phen)2]PF6, [Ru(bpy)2Cl2], HBT) revealed
that only HBT caused the decrease in atrazine concentration in the system laccase–atrazine–
redox-mediator. A more detailed study of components of the model system “atrazine/laccase/
HBT” showed that HBT itself reacted with atrazine and other chlorine-containing atrazine
derivatives directly, without laccase involvement, and did not interact with the atrazine
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hydroxy derivatives. It is known that HBT in aqueous solution can pass into ionic form.
Therefore, it has been suggested that two products can form, both consisting of HBT and
atrazine, with the formation of (-N-O-C-) bonds in position (2) of atrazine. Addition of laccase
to a solution of HBT/Atr resulted in the formation of several products, one of them having a
retention time matching that of HBT-Atr compound. In enzymatic reactions, two other
products formed with retention times of 15.3 min and 19.4 min, which were identified as
deethylatrazine (DEA) and the compound formed by the interaction of DEA and HBT. Thus,
the addition of enzyme resulted in the formation of new products different from that formed
in the reaction of HBT with atrazine. The model system “atrazine/laccase/HBT” was studied
at different molar ratios of atrazine/mediator (9:1 to 1:9) and at two different concentrations of
enzyme (0.02 μm and 1.0 μm). The deepest atrazine conversion – up to 70% in 10 days – was
observed at HBT/Atr ratio of 9/1 and enzyme concentration of 0.02 μm. Proton nuclear
magnetic resonance (1H-NMR) and HPLC-MS/MS allowed confirming the product identifica‐
tion in the model systems “Atr/HBT” and “Atr/HBT/laccase”: the formation of Atr-HBT in the
“Atr/HBT” system, and DEA and DEA-HBT in the “Atr/HBT/laccase” system. Atr-HBT existed
in two forms: protonated (M.W. 315 g/mol) and diprotonated (M.W. 316 g/mol). In the reaction
“Atr/HBT/laccase” DEA is formed, as well as protonated (M.W. 287 g/mol) and diprotonated
(M.W. 288 g/mol) forms of the product DEA-HBT. Based on the data obtained for the five
established structures of the products, we have proposed the atrazine oxidation scheme by the
“laccase/HBT” system (Fig. 2), which includes nonenzymatic and enzymatic stages (Fig. 3).

During the nonenzymatic stage, a product consisting of atrazine and HBT is formed. As the
substrates and the products in the “Atr/HBT” system are in equilibrium, the addition of laccase
to the reaction causes the oxidation of HBT and the formation of HBT radical. The HBT radical
reacts with the Atr-HBT compound and triggers the dissociation of the (-NH-CH-) bonds,
resulting in the formation of DEA-HBT and ethyl alcohol. In turn, DEA-HBT decomposes to
form two products: DEA and HBT. The ability of HBT to form tautomeric forms and to directly
react with atrazine suggested that HBT would degrade in the reaction mixture. However,
under the proposed scheme, during the hydrolysis of DEA-HBT, DEA and HBT formed. This
may be one of the reasons for the effectiveness of HBT as a redox-mediator in laccase – redox-
mediator system.

The high potential of WRF as well as their ligninolytic enzymes in herbicide transformation is
well documented. Nevertheless, the mechanisms of degradation and degradation pathways
for many herbicides are still not explored. Further studies are needed to elucidate the mecha‐
nism of herbicide degradation by WRF and ligninolytic enzymes and identify the metabolites
formed.

5. Bioremediation technologies based on application of white-rot-fungi or
their extracellular enzymes

The increasing use of agricultural chemicals including herbicides results in the accumulation
of these compounds and their derivatives in soil and water. Many herbicides have medium-
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to long-term stability in soil and so their persistence has a significant impact on the functioning
of soil ecosystems. Biological decomposition of herbicides is the most important and effective
way to remove these compounds. Therefore, bioremediation is now regarded as a promising
strategy for the rehabilitation of polluted environments because of its cost efficiency and
environmental friendliness. A detailed examination of the advantages and the disadvantages
of bioremediation as well as comparison of bacteria and white-rot fungi in terms of their usage
for bioremediation can be found in [9,90]. Filamentous fungi in general and white-rot fungi in
particular are generally more tolerant to high concentrations of organic and inorganic toxicants
as compared to bacteria [8,91]. On the other hand, white-rot fungi possess great powers of
endurance under environmental stresses [91-93]. Finally, white-rot fungi are unique among
eukaryotic or prokaryotic microorganisms, because they possess a very powerful extracellular
oxidative lignin-modifying enzyme system, which has broad substrate specificity and is able
to oxidize a fair amount of organic pollutants [91]. So, white-rot fungi are likely to be powerful
prospective agents in soil bioremediation technologies [90,91]. Table 2 gives some examples
of white-rot fungi that have been demonstrated to be able to degrade herbicides effectively.

Currently, more than ten species of white-rot fungi can be considered as the effective degraders
of different herbicides (Table 2). Among them, Ph. chrysosporium and T. versicolor have become
the most commonly used indicators in herbicide biodegradation studies due to their good
degrading capacity, fast growth, and easy handling in culture [19]. Achieved efficiency of the
herbicide degradation by white-rot fungi is usually very high; Ph. chrysosporium has been
shown to decrease 2 μM atrazine in growth medium by 48% within the first 4 days of incubation
[58]. Koroleva and coauthors reported that Cer. maxima, Coriolopsis fulvocenerea, and C.
hirsutus consumed up to 50% atrazine in 5-day cultivation in the presence of the xenobiotic
and at least 80–92% in 40 days [66]. According to the data presented by Bending and coauthors,
maximum degradation of herbicides by T. versicolor, H. fasciculare, and S. hirsutum after 42 days
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of cultivation was above 86% for diuron, atrazine, and terbuthylazine and about 44% for
metalaxyl [72]. However, the degradation efficiency depends greatly on the initial concentra‐
tion of the herbicides. After 10-day cultivation of G. Lucidum, residual concentration of diuron
was 48% when initial concentration of the herbicide was 30 μM and increased to 81% when
initial concentration of the herbicide was 80 μM. Corresponding values for bentazon initial
concentrations 5 and 20 μM were 61% and 85%, respectively [68]. The observed phenomenon
most likely results from fungi inhibition at the excessive rates of herbicide application.

In spite of high degradation potential of white-rot fungi demonstrated in lab settings, fungi
are rarely agents of choice for environmental biotechnology. The most important problem is
that many research studies examine only destruction of single xenobiotic, whereas in reality
mixtures of xenobiotics differing in their structure and mode are subjects for detoxification in
the environment [90]. The latter can be toxic for the fungi, resulting in significant inhibition of
their growth and, in turn, in the target herbicide degradation. For example, Maceil and
coauthors studied effects caused by picloram on the white-rot fungi G. lucidum and Trametes
sp. They found oxidative stress in the fungi induced by the herbicide and inability of the
studied fungal strain to degrade picloram effectively [12]. Taking into consideration real
contamination of soil with mixtures of xenobiotic compounds, studies of such multitarget
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degradation have to be specially addressed [94,95]. Additionally, low bioavailability of
xenobiotic and preferential use of carbon compounds other than the contaminant of interest
is often among potential reasons for the general lack of success of bioremediation strategies
[94]. Thus, researches are needed to develop and engineer bioremediation technologies that
are appropriate for sites with complex contaminants [90].

Bending et al. [11] studied degradation of the herbicides diuron, atrazine, and terbuthylazine
in the so-called biobeds inoculated with white-rot fungi. Biobeds are on-farm pesticide
bioremediation constructions developed in Sweden to retain pesticide spills occurring during
filling the spraying equipment and facilitate natural attenuation and are currently being
evaluated in a number of other European countries [96]. Biobed matrix was prepared by mixing
together barley straw, topsoil, and compost [97]. When Cor. versicolor, H. fasciculare, and S.
hirsutum were grown in biobed matrix, they were all able to degrade the herbicides, although
there were differences in the relative degrading capacities of the fungi in liquid and biobed
media. Wirén- Lehr et al. studied the degradation of isoproturon in biobeds with and without
inoculation with Ph. chrysosporium. They determined that after 28 days in biobeds inoculated
with the fungus, total extractable isoproturon decreased by 78%, and after 100 days by >99%,
i.e., the herbicide had disappeared in the biobeds, while in noninoculated biobeds that value
after 100 days was 76% [76].

To confine white-rot fungi within the toxic environment, a new methodology, which uses
growing on potato dextrose agar only or dextrose agar enriched with adsorbent materials, was
explored for the removal of xenobiotics from wastewaters [98-100]. This methodology,
assuming combined adsorption of organic toxicants followed by their removal, debarred
mycelium entrance in the contaminated medium, and excreted fungal enzymes could degrade
only the contaminants that entered the medium. The advantage of this methodology is that it
avoids additional contamination of the environment with fungal hyphae and exudates, scarce
aeration for fungal activity, the continuous contaminant supplying for fungal activity, and the
fungus can be easily removed with the agar medium. The developed methodology was
successfully employed for simultaneous removal of five coexisting xenobiotics including
herbicide linuron from wastewaters, using isolates of T. versicolor and S. hirsutum as biode‐
gradation agents [101]. Treatments with T. versicolor removed linuron from wastewater
completely or almost completely, with removal percentages varying from 95% to 100%,
depending on adsorbent material used. S. hirsutum did not show a great potential to degrade
linuron, although after 20 days, the amount of compound removed by this fungus was
statistically greater than the control in some cases. Of special importance was that the waste‐
water used in the study was a real leachate collected from a municipal landfill. Loffredo et al.
[100] demonstrated also degradation of linuron from a similar municipal landfill leachate by
the described approach, using the fungus P. ostreatus.

An approach assuming an introduction preliminary inoculated matrix rather than fungal
inoculum itself seems to be very promising with respect to the contaminated soil as well.
Recently, some companies have included the use of ligninolytic fungi for soil remediation into
their programs, for example, “EarthFax Development Corp.” in the USA and “Gebruder Huber
Bodenrecycling” in Germany [90]. EarthFax Engineering, Inc. and its affiliate EarthFax

Herbicides, Physiology of Action, and Safety208



Development Corp. have demonstrated the degradation of polychlorinated dibenzo-p-dioxins
(PCDDs) and polychlorinated dibenzo furans (PCDFs) in soil under pilot-scale conditions
through the use of sawdust thoroughly colonized with the white-rot fungus P. ostreatus. After
282 days of the experiment, the degradation values of the dioxins varied from 61% to 80%,
depending on the PCDD structure [http://www.earthfax.com]. The obtained results indicate
the clear necessity of further examination of inoculated-matrix-based approach to develop
technologies of remediation of the herbicide polluted environments. Overall, future research
should be geared toward narrowing the gaps between fungal-based bioremediation in
laboratory and environmental applications [20,102].

Although the mechanisms involved in herbicide degradation by white-rot fungi are not clearly
understood, most scientists emphasize the role of the extracellular enzymes of LMS in the
degradation of the herbicides by WRF [8,9,103,104]. An alternate pathway of detoxification is
the use of a cytochrome P450 monooxygenase system, independent of the production of
ligninolytic peroxidase enzymes [105]. To date, the latter was clearly proved only for the
fungus Ph. chrysosporium and so, the capacity of extracellular lignin-modifying enzymes to
degrade herbicides has been mainly investigated [18].

The three principal classes of these enzymes, namely lignin peroxidases, manganese peroxi‐
dases, and laccase, are likely able to degrade not only phenols, chlorophenols, and aromatic
amines but also non-phenolic compounds such as phenylureas, phenylamides, and s-triazines
[100], and the presence of redox active mediators can enlarge the range of compounds that
could be oxidized by these enzymes [106]. Table 3 gives some examples of herbicide degra‐
dation by the above enzymes. Laccase from Ph. chrysosporium converts the diketonitrile
isoxaflutole to the acid in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)
(ABTS) acting as a redox mediator at pH 3 [74]. LiP and MnP produced by Ph. chrysosporium
degraded isoproturon in both in vivo and in vitro experiments [73]. MnP from Ph. chrysospo‐
rium oxidized bentazon in the presence of Mn(II) and Tween 80 [71]. The herbicide glyphosate
was degraded by laccase of N. frowardii MnP and T. versicolor in the presence of ABTS as a
mediator [81]. These reports clearly show the potential application of extracellular enzymes of
white-rot fungi in the treatment of soil and wastewater contaminated with herbicides [18].

Although application of LiP, MnP, and laccase for degradation many organic pollutants
including aromatic compounds, pentachlorophenol, dyes, chlorophenol, urea derivatives, etc.,
is well known [21,107], only a few papers concerning herbicide degradation specifically are
available. Bollag suggested that it is possible to enhance the natural process of xenobiotic
binding and incorporation into the humic substances by adding laccase to the soil [108].
Chlorinated phenols and anilines were transformed in soil by oxidative coupling reactions
mediated by laccase or peroxidase [109]. The herbicide bentazon was incubated with laccase
or peroxidase in the presence of guaiacol, which was used as a model humic monomer.
Although bentazon did not react significantly with guaiacol in the presence of the enzymes
solely, the reaction of the herbicide with guaiacol was almost complete in 30 min in the presence
guaiacol and ferulic acid, which are the electron donor co-substrates in most of the oxidative
coupling reactions [88]. Laccase from C. unicolor displayed a lower efficiency in oxidizing the
herbicides 2,4-D and simazine, but the enzyme oxidized efficiently 2,4-DCP, a derivative of
2,4-D [110]. González Matute and coauthors demonstrated the ability of extracellular enzymes
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of A. blazei to degrade the herbicide metsulfuron-methyl [111]. Crude enzyme preparation was
obtained from spent compost, which was the residual compost waste generated by the fungi
cultivation industry. The degradation of the herbicide was confirmed using bioassay experi‐
ments with oil rape (Brassica napus L.) as the plant indicator. The detoxifying capacity of the
preparations containing lignolytic enzymes and products of coal solubilization by T. hirsuta
and T. maxima in respect to the herbicide atrazine was demonstrated by Klein et al. [112].

Pizzul et al. conducted degradation tests using purified MnP from N. frowardii and LiP and
laccase from T. versicolor in combination with different mediators in order to estimate trans‐
formation of glyphosate and Pesticide Mix 34. The latter included the herbicides atrazine,
chlorotoluron, chloroxuron, diuron, fenuron, isoproturon, linuron, metamitron, metazachlor,
metobromuron, metolachlor, metoxuron, metribuzin, monolinuron, prometryn, simazine,
terbuthylazine, and terbutryn. Authors demonstrated that MnP and laccase were very efficient
in the transformation of glyphosate and led to (aminomethyl) hosphonic acid formation
(metabolite of glyphosate) and accumulation. In addition, simultaneous degradation of 22
pesticides in a mixture was obtained by the action of MnP in the presence of Tween 80 and
MnSO4, with degradation values varying from 20% to 100% [81].

However, real contaminated environments contain usually a wide number of different
chemical species, some of which can inhibit fungal growth and/or reduce enzymatic activity
[106]. To preserve the enzyme’s activity and stability over time, immobilization of the enzyme
can be used. Immobilized enzymes have usually a long-term and operational stability, being
very stable toward physical, chemical, and biological denaturing agents. Furthermore, they
may be reused and recovered at the end of the process [85,91]. Immobilization of laccase from
T. versicolor onto a hydrophilic PVDF microfiltration membrane allowed obtaining the
membrane grafted with 220U enzyme activity used in a filtration module to transform a
phenylurea herbicide derivative 2-HF (N',N'-(dimethyl)-N-(2-hydroxyphenyl)urea) from
waste water. No 2-HF was found in permeate 5 min after the beginning of the experiment [85].
Laccase from T. versicolor immobilized on an zein polyurethane nanofiber via cross-linking
with glutaraldehyde completely degraded the phenylurea herbicide chloroxuron within 30
min in the presence of 1 mM 1-hydroxybenzotriazole [86].

Both LiP, MnP and laccase may behave as powerful catalysts in the biodegradation of
herbicides. However, their full-scale application for remediation of polluted environments is
still limited. The latter may derive from several drawbacks and disadvantages of the enzymes
application such as enzyme instability in the environment and loss of their activity. Immobi‐
lization of the enzymes is likely to be a promising way to develop a successful approach for
the remediation of the herbicide polluted sites.

6. Conclusion

The high potential of WRF as well as their ligninolytic enzymes in herbicide transformation is
analyzed in the present review. Analysis of literature data on degradation rate of herbicides
by WRF demonstrated enhancing WRF degradation capacity along with increase content of
branched alkyl groups in the herbicide molecule. However, detailed quantitative structure–
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degradation activity studies should be conducted to prove or disprove this preliminary
observation. Therefore, the mechanisms of herbicides degradation by WRF for many herbi‐
cides are still not explored and degradation pathways are not established, including the
identification of the metabolites formed.

The ligninolytic enzymes MnP and laccase were shown to behave as powerful catalysts in the
biodegradation of herbicides. However, their full-scale application for remediation of polluted
environments is still limited. The latter may derive from several drawbacks and disadvantages
of the enzymes application such as enzyme instability in the environment and loss of their
activity. Immobilization of the enzymes is likely to be a promising way to develop a successful
approach for the remediation of the herbicide polluted sites.

The potential of ligninolytic enzymes in the degradation of herbicides is beginning to be
characterized at the molecular level. The constant progress in molecular and genomic techni‐
ques has provided new insights on the role of regulating elements in the differential expression
of ligninolytic enzymes in WRF. Further studies will elucidate the mechanisms of ligninolytic
enzymes’ transcriptional regulation and provide deeper understanding of this complicated
process.

It should be noted that efficient recommendations for microbial remediation need integral
knowledge about potential of individual enzymatic reactions and specific features of their
interactions for different microbial species. Current information about genetic regulation of
coupled reactions may improve significantly bioremediation technologies, as well as empiric
data regarding multistep detoxification with the use of different microorganisms.

Analysis presented in this review confirms the important role of white-rot fungi as participants
in herbicide decontamination in the environment and the prospects of the development of new
biotechnological preparations on the basis of fungal enzymes. The most important tasks in the
development of bioremediation technologies and recent results of key stakeholders in this field
are discussed.

7. Abbreviations

ABTS – 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)

ACC – acetyl-CoA carboxylase

ALS – acetolactate synthase

DEA – deethylatrazine

DCPMU – 1-(3,4-dichlorophenyl)-3-methylurea

DCPU – 1-(3,4-dichlorophenyl)urea

1H-NMR – proton nuclear magnetic resonance

HPPD – p-hydroxyphenylpyruvate dioxygenase
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HR – herbicide-resistant crop

EPSP – 5-enolpyruvylshikimate-3-phosphate

LiP – lignin peroxidase

LMS – lignin modifying system

MnP – Mn peroxidase

PCDD – polychlorinated dibenzo-p-dioxin

PCDF – polychlorinated dibenzo furan

PCR – polymerase chain reaction

PLEL – phospholipid ether lipids

PLFA – phospholipid fatty acid

PPO – protoporphyrinogen oxidase

PSII – photosystem II

ROS – reactive oxygen species

WRF – white-rot fungi

XRE – xenobiotic responsive element
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