9 research outputs found

    Application of Photothermal and Photoacoustic Spectroscopy for the Monitoring of Aqueous Dispersions of Carbon Nanomaterials

    Get PDF
    Photothermal  and  optoacoustic  spectroscopy  in their  state-of-the-art  techniques—multiwavelength, scanning  and  transient—are  used  for  complex investigation  and analysis  (chemical  analysis  and the  estimation  of  physicochemical  properties and size)  of  novel  carbon  materials—fullerenes  and nanodiamonds—and  their aqueous  dispersions  as promising biomedical nanosystems. The estimation of the cluster size and the possibilities to determine subnanogram  amounts  of  both nanodiamonds  and fullerenes  by  these  techniques  are  shown.  The comparison  of fullerene  solutions  in  various solvents,  toluene, N-methylpyrrolydone and  water, is made.  The  advantages  of  the  photothermal  and optoacoustic  techniques  over conventional spectroscopies  and  the  current  limitation  are discussed. The necessity to develop robust  models for  transient  and  imaging  photothermal  techniques is outlined

    Experimental progress in positronium laser physics

    Get PDF

    Absorption spectra of nanodiamond aqueous dispersions by optical absorption and optoacoustic spectroscopies

    No full text
    The multispectral modality and technique for optically dense samples of optoacoustic spectroscopy were applied to measure spectra and high absorbances of concentrated aqueous dispersions of undoped nanodiamonds. The data from optoacoustic and optical transmission measurements and DSC data of the mean particle size by the Gibbs–Kelvin equation are compared to estimate the difference in composition of various nanodiamond trademarks. Optoacoustic spectra confirm the contribution of surface dimer chains into the absorption of nanodiamonds in the long wavelength range. Optoacoustic and conventional absorption spectra of aqueous solutions of nanodiamond fractions after centrifugation (15300g) and ultracentrifugation (130000g) revealed a separation of a highly absorbing non-diamond sp2 phase. The two-step separation by ultracentrifugation followed by extra centrifugation made it possible to isolate a highly absorbing and soluble nanodiamond phase with the particle size of 3.6 nm, showing a change in spectra compared to the starting nanodiamond material. Keywords: Optoacoustic spectroscopy, Multispectral optoacoustic spectroscopy, Optically dense samples, Nanodiamonds, Nanodiamond aqueous dispersions, Nanodiamond fractionatio

    Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes

    No full text
    Background: Hansen’s disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease’s complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. Results: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae’s genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. Conclusions: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease’s global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy’s global history and can contribute to current models of M. leprae’s worldwide dissemination, including interspecies transmissions

    The mechanisms of the formation of metal-containing nanoparticles

    No full text
    corecore