688 research outputs found

    Interleukin-4 enhances proliferation of human pancreatic cancer cells: evidence for autocrine and paracrine actions

    Get PDF
    Interleukin-4 (IL-4) is an immunomodulatory cytokine, which can inhibit the growth of tumour cells. Pancreatic cancer cells and tissues express high levels of IL-4 receptors. The aim of this study was to characterise the effects of IL-4 on the growth and signalling pathways of pancreatic cancer cells. Cell growth was determined by cell counting and MTT assays in association with fluorescence-activated cell sorter analysis, IL-4 expression using ELISA and real-time PCR techniques, and signal transduction using immunoprecipitation or immunoblot analysis. We now report for the first time that IL-4 significantly enhanced the growth of five out of six cultured pancreatic cancer cell lines in a dose-dependent manner in association with an increased fraction of cells in S-phase. Surprisingly, all six cell lines expressed endogenous IL-4, and IL-4 was detectable in the supernatant. Incubating cells with neutralising IL-4 antibodies resulted in a significant inhibition of basal growth in three cell lines, including IL-4-unresponsive MIA PaCa-2 cells, which however expressed the highest endogenous IL-4 levels. Interleukin-4 enhanced activity of MAPK, Akt-1, and Stat3 in IL-4-responsive, but not in IL-4-unresponsive MIA PaCa-2 cells; however, IL-4 enhanced tyrosine phosphorylation of insulin receptor substrate-1 and -2 in all cell lines. Our results demonstrate for the first time that pancreatic cancer cells produce IL-4 and that IL-4 can act as a growth factor in pancreatic cancer cells. Together with the observation that neutralising IL-4 antibodies can inhibit the growth of these cells, our results suggest that IL-4 may act as an autocrine growth factor in pancreatic cancer cells and also give rise to the possibility that cancer-derived IL-4 may suppress cancer-directed immunosurveillance in vivo in addition to its growth-promoting effects, thereby facilitating pancreatic tumour growth and metastasis

    The impact of treatment with indacaterol in patients with COPD:A post-hoc analysis according to GOLD 2011 categories A to D

    Get PDF
    AbstractBackgroundIndacaterol is an inhaled, once-daily, ultra-long-acting β2-agonist for the treatment of chronic obstructive pulmonary disease (COPD). We report on the effectiveness of indacaterol and other bronchodilators compared with placebo in patients across the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011 categories A to D.MethodsA post-hoc, subgroup pooled analysis of 6-month efficacy data from three randomized, placebo-controlled, parallel-group studies involving 3862 patients was performed across GOLD 2011 categories A to D, according to baseline forced expiratory volume in 1 s (FEV1) % predicted, modified Medical Research Council (mMRC) dyspnea scale, and exacerbation history in the 12 months prior to entry. Efficacy of once-daily indacaterol 150 and 300 μg, open-label tiotropium 18 μg, twice-daily salmeterol 50 μg, and formoterol 12 μg was compared with placebo. End points analysed were trough FEV1, transition dyspnea index (TDI), and St George's Respiratory Questionnaire (SGRQ) total score, all at Week 26, and mean rescue medication use over 26 weeks.ResultsIndacaterol 150 and 300 μg significantly improved FEV1, compared with placebo across all GOLD groups. Indacaterol 150 and 300 μg also significantly improved TDI, SGRQ total score, and mean rescue medication use compared with placebo across most GOLD subgroups.ConclusionsTreatment selection according to patient's symptoms as well as lung function is an important consideration in maintenance treatment of COPD. Indacaterol 150 and 300 μg effectively improved lung function and symptoms in patients across all GOLD 2011 categories

    Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1

    Get PDF
    PTEN is a candidate tumour suppressor gene and frequently mutated in multiple cancers, however, not in pancreatic cancer. Recently, it has been demonstrated that PTEN expression is regulated by TGF-β1. Using TGF-β1 transgenic mice (n=7) and wildtype littermates (n=6), as well as pancreatic tissues obtained from organ donors (n=10) and patients with pancreatic cancer (n=10), we assessed the expression of PTEN by means of immunohistochemistry and semiquantitative PCR analysis. In addition, PANC-1 cells were treated with TGF-β1 in vitro and the levels of PTEN mRNA were determined in these cells. In human pancreatic cancers PTEN mRNA levels were significantly decreased (P<0.05). In addition, in the pancreas of TGF-β1 transgenic mice the expression of PTEN was significantly reduced (P<0.01), as compared to wildtype littermates and incubation of PANC-1 cells with TGF-β1 decreased PTEN mRNA levels after 24 h. Inasmuch as TGF-β1 decreases PTEN expression in human pancreatic cancer cells and human pancreatic cancers overexpress TGF-β1, the reduced expression of PTEN in pancreatic cancer may be mediated by TGF-β1 overexpression. Thus, although PTEN is not mutated in pancreatic cancers, the reduction of its expression may give pancreatic cancer cells an additional growth advantage

    Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study

    Get PDF
    The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay

    Enhanced Cytotoxicity without Internuclear Spread of Adenovirus upon Cell Fusion by Measles Virus Glycoproteins

    Get PDF
    The efficiency of viruses in cancer therapy is enhanced by proteins that mediate the fusion of infected cells with their neighbors. It was reported that replication-competent adenovirus particles can spread between nuclei within fusion-generated syncytia. To assess this conjecture, we generated fusogenic adenoviruses that express a balanced ratio of the F and H glycoproteins of measles virus. The viruses displayed enhanced cytotoxicity but largely unchanged replication efficiencies compared to a nonfusogenic virus. Most notably, the virus genomes did not spread through fusion-generated multinuclear cells. Hence, adenovirus replication in syncytia remains largely restricted to initially transduced nuclei

    Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy

    Get PDF
    <p>Abstract</p> <p>Bckground</p> <p>A number of studies have investigated whether the activity levels of enzymes involved in 5-fluorouracil (5-FU) metabolism are prognostic factors for survival in patients with colorectal carcinoma. Most reports have examined thymidylate synthetase (TS) and dihydropyrimidine dehydrogenase (DPD) in unresectable or metastatic cases, therefore it is unclear whether the activity of these enzymes is of prognostic value in colorectal cancer patients treated with radical resection and adjuvant chemotherapy with 5-FU.</p> <p>Methods</p> <p>This study examined fresh frozen specimens of colorectal carcinoma from 40 patients who had undergone curative operation and were orally administered adjuvant tegafur/uracil (UFT) chemotherapy. TS, DPD and orotate phosphoribosyl transferase (OPRT) activities were assayed in cancer tissue and adjacent normal tissue and their association with clinicopathological variables was investigated. In addition, the relationships between TS, DPD and OPRT activities and patient survival were examined to determine whether any of these enzymes could be useful prognostic factors.</p> <p>Results</p> <p>While there was no clear relationship between pathological findings and TS or DPD activity, OPRT activity was significantly lower in tumors with lymph node metastasis than in tumors lacking lymph node metastasis. Postoperative survival was significantly better in the groups with low TS activity and/or high OPRT activity.</p> <p>Conclusion</p> <p>TS and OPRT activity levels in tumor tissue may be important prognostic factors for survival in Dukes' B and C colorectal carcinoma with radical resection and adjuvant chemotherapy with UFT.</p
    corecore