140 research outputs found

    PENENTUAN KELAYAKAN PEMBERIAN KREDIT MIKRO DI KOPERASI SWAMITRA KOTA KUPANG DENGAN FUZZY SIMPLE ADDITIVE WEIGHT (FUZZY-SAW)

    Get PDF
    Dalam pengajuan pinjaman lunak bagi calon peminjam atau debitur ada aturan yang harus di ikuti dan syarat yang harus di penuhi. Kelayakan dari pengajuan pinjaman yang dilakukan oleh seorang peminjam atau calon nasabah harus melalui penilaian dari lembaga peminjam. Salah satu lembaga peminjam ada di kota kupang yaitu Koperasi Swamitra. Koperasi swamitra kota kupang mempunyai standar penilaiaan pemberian pinjaman bagi peminjam, baik yang bersifat menerima dan menolak terhadap pengajuan pinjaman yang dilakukan, dalam menjaga adanya pinjaman yang tidak berjalan dengan baik. Aturan penilaian yang dipakai dalam pemberian pinjaman ke debitur antara lain : jaminan, penghasilan, pekerjaan, total pinjaman, jangka waktu pinjaman, status rumah, dan karakter orang. Sistem yang dibangun untuk mengatasi masalah yang terjadi di Koperasi Swamitra kota kupang dengan menggunakan Fuzzy-Simple Addictive Weight untuk menilai kelayakan calon debitur. Fuzzy-Simple Addictive Weight dapat digunakan untuk menentukan kelayakan pemberian kredit, sehingga dapat menjadi saran yang tepat dari sistem untuk menentukan alternatif layak atau tidak nya dalam pengajuan kredit. Hasil sistem yang didapat dengan mengunakan uji sensivitas adalah 37%, dengan jumlah data uji sebanyak 141 data. Kriteria yang paling sensivitas adalah kriteria jaminan dengan pemberian perubahan bobot, SPK dengan Fuzzy-Simple Addictive Weight dapat di jadikan solusi terbaik

    Single-shot dynamics of pulses from a gas-filled hollow fiber

    Get PDF
    We present measurements of the performance characteristics of few-cycle laser pulses generated by propagation through a gas-filled hollow fiber. The pulses going into the fiber and the compressed pulses after the fiber were simultaneously fully characterized shot-by-shot by using two kHz SPIDER setups and kHz pulse energy measurements. Output-pulse properties were found to be exceptionally stable and pulse characteristics relevant for non-linear applications like high-harmonic generation are discusse

    Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation

    Get PDF
    Intense, well-controlled light pulses with only a few optical cycles start to play a crucial role in many fields of physics, such as attosecond science. We present an extremely simple and robust technique to generate such carrier-envelope offset (CEO) phase locked few-cycle pulses, relying on self-guiding of intense 43-fs, 0.84mJ optical pulses during propagation in a transparent noble gas. We have demonstrated 5.7-fs, 0.38mJ pulses with an excellent spatial beam profile and discuss the potential for much shorter pulses. Numerical simulations confirm that filamentation is the mechanism responsible for pulse shortening. The method is widely applicable and much less sensitive to experimental conditions such as beam alignment, input pulse duration or gas pressure as compared to gas-filled hollow fiber

    Effect of DMARDs on the immunogenicity of vaccines

    Get PDF
    Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.</p

    Effect of DMARDs on the immunogenicity of vaccines

    Get PDF
    Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.</p

    Effect of DMARDs on the immunogenicity of vaccines

    Get PDF
    Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.</p

    Effect of DMARDs on the immunogenicity of vaccines

    Get PDF
    Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.</p

    Effect of DMARDs on the immunogenicity of vaccines

    Get PDF
    Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.</p

    Effect of DMARDs on the immunogenicity of vaccines

    Get PDF
    Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.</p
    corecore