286 research outputs found

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    Effect of processing by femtosecond pulsed laser on mechanical properties of submicrocrystalline titanium

    Get PDF
    Effect of femtosecond laser processing on mechanical properties of plates made of submicrocrystalline VT1-0 titanium alloy is studied using active deformation and fatigue testing involving cantilever bendin

    Studies of the Chemical and Structural Heterogeneity of the Technological Model of the Fusion Boundary of Pearlitic Steel and the Material of the Anticorrosive Cladding of VVER

    Get PDF
    The properties of ingots of variable chemical composition are investigated. The ingots simulated the fusion boundary of heterogeneous steels of pearlitic and austenitic grade, used as structural for VVER-type reactors. The distribution of chemical elements and hardness, microstructure was studied. The phase composition of the ingots was studied using thermodynamic modeling. It was found that the distribution of alloying elements, hardness and phase composition is nonlinear. In ingots, a zone of a sudden change in hardness was detected, from 350 HB to 150 HB, ingot 1, and from 250 HB to 160 HB, ingot 2. A study of the phase composition and microstructure showed that at a ratio of the austenite phase to the ferritic (71-76)% to (29-24)%, a sharp change in hardness is observed. Keywords: heterogeneous welded joints and cladding, fusion boundary, technological modeling, thermodynamic modeling

    Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters

    Full text link
    The dependencies of the melting point and the lattice parameter of supported metal nanoclusters as functions of clusters height are theoretically investigated in the framework of the uniform approach. The vacancy mechanism describing the melting point and the lattice parameter shifts in nanoclusters with decrease of their size is proposed. It is shown that under the high vacuum conditions (p<10^-7 torr) the essential role in clusters melting point and lattice parameter shifts is played by the van der Waals forces of cluster-substrate interation. The proposed model satisfactorily accounts for the experimental data.Comment: 6 pages, 3 figures, 1 tabl

    "Cold Melting" of Invar Alloys

    Full text link
    An anomalously strong volume magnetostriction in Invars may lead to a situation when at low temperatures the dislocation free energy becomes negative and a multiple generation of dislocations becomes possible. This generation induces a first order phase transition from the FCC crystalline to an amorphous state, and may be called "cold melting". The possibility of the cold melting in Invars is connected with the fact that the exchange energy contribution into the dislocation self energy in Invars is strongly enhanced, as compared to conventional ferromagnetics, due to anomalously strong volume magnetostriction. The possible candidate, where this effect can be observed, is a FePt disordered Invar alloy in which the volume magnetostriction is especially large

    Electron-phonon scattering at the intersection of two Landau levels

    Get PDF
    We predict a double-resonant feature in the magnetic field dependence of the phonon-mediated longitudinal conductivity σxx\sigma_{xx} of a two-subband quasi-two-dimensional electron system in a quantizing magnetic field. The two sharp peaks in σxx\sigma_{xx} appear when the energy separation between two Landau levels belonging to different size-quantization subbands is favorable for acoustic-phonon transitions. One-phonon and two-phonon mechanisms of electron conductivity are calculated and mutually compared. The phonon-mediated interaction between the intersecting Landau levels is considered and no avoided crossing is found at thermal equilibrium.Comment: 13 pages, 8 figure

    Synthesis of Nanoscale TiO2 and Study of the Effect of Their Crystal Structure on Single Cell Response

    Get PDF
    To study the effect of nanoscale titanium dioxide (TiO2) on cell responses, we synthesized four modifications of the TiO2 (amorphous, anatase, brookite, and rutile) capable of keeping their physicochemical characteristics in a cell culture medium. The modifications of nanoscale TiO2 were obtained by hydrolysis of TiCl4 and Ti(i-OC3H7)4 (TIP) upon variation of the synthesis conditions; their textural, morphological, structural, and dispersion characteristics were examined by a set of physicochemical methods: XRD, BET, SAXS, DLS, AFM, SEM, and HR-TEM. The effect of synthesis conditions (nature of precursor, pH, temperature, and addition of a complexing agent) on the structural-dispersion properties of TiO2 nanoparticles was studied. The hydrolysis methods providing the preparation of amorphous, anatase, brookite, and rutile modifications of TiO2 nanoparticles 3–5 nm in size were selected. Examination of different forms of TiO2 nanoparticles interaction with MDCK cells by transmission electron microscopy of ultrathin sections revealed different cell responses after treatment with different crystalline modifications and amorphous form of TiO2. The obtained results allowed us to conclude that direct contact of the nanoparticles with cell plasma membrane is the primary and critical step of their interaction and defines a subsequent response of the cell
    corecore