212 research outputs found

    Alternative Promoters Influence Alternative Splicing at the Genomic Level

    Get PDF
    Background: More and more experiments have shown that transcription and mRNA processing are not two independent events but are tightly coupled to each other. Both promoter and transcription rate were found to influence alternative splicing. More than half of human genes have alternative promoters, but it is still not clear why there are so many alternative promoters and what their biological roles are. Methodology/Principal Findings: In this study, we explored whether there is a functional correlation between alternative promoters and alternative splicing by a genome-wide analysis of human and mouse genes. We constructed a large data set of genes with alternative promoter and alternative splicing annotations. By analyzing these genes, we showed that genes with alternative promoters tended to demonstrate alternative splicing compare to genes with single promoter, and, genes with more alternative promoters tend to have more alternative splicing variants. Furthermore, transcripts from different alternative promoters tended to splice differently. Conclusions/Significance: Thus at the genomic level, alternative promoters are positively correlated with alternativ

    Chromatin structure characteristics of pre-miRNA genomic sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are non-coding RNAs with important roles in regulating gene expression. Recent studies indicate that transcription and cleavage of miRNA are coupled, and that chromatin structure may influence miRNA transcription. However, little is known about the relationship between the chromatin structure and cleavage of pre-miRNA from pri-miRNA.</p> <p>Results</p> <p>By analysis of genome-wide nucleosome positioning data sets from human and <it>Caenorhabditis elegans </it>(<it>C. elegans</it>), we found an enrichment of positioned nucleosome on pre-miRNA genomic sequences, which is highly correlated with GC content within pre-miRNA. In addition, obvious enrichments of three histone modifications (H2BK5me1, H3K36me3 and H4K20me1) as well as RNA Polymerase II (RNAPII) were observed on pre-miRNA genomic sequences corresponding to the active-promoter miRNAs and expressed miRNAs.</p> <p>Conclusion</p> <p>Our results revealed the chromatin structure characteristics of pre-miRNA genomic sequences, and implied potential mechanisms that can recognize these characteristics, thus improving pre-miRNA cleavage.</p

    Histone Deacetylase Activity Modulates Alternative Splicing

    Get PDF
    There is increasing evidence to suggest that splicing decisions are largely made when the nascent RNA is still associated with chromatin. Here we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection. Using splicing-sensitive microarrays, we identified ∼700 genes whose splicing was altered after HDAC inhibition. We provided evidence that HDAC inhibition induced histone H4 acetylation and increased RNA Polymerase II (Pol II) processivity along an alternatively spliced element. In addition, HDAC inhibition reduced co-transcriptional association of the splicing regulator SRp40 with the target fibronectin exon. We further showed that the depletion of HDAC1 had similar effect on fibronectin alternative splicing as global HDAC inhibition. Importantly, this effect was reversed upon expression of mouse HDAC1 but not a catalytically inactive mutant. These results provide a molecular insight into a complex modulation of splicing by HDACs and chromatin modifications

    Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity

    Get PDF
    A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies

    Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>.</p> <p>Results</p> <p>We have identified the previously 'missing' <it>Giardia </it>RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs.</p> <p>Conclusions</p> <p>Results indicate that <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.</p

    Modelling Reveals Kinetic Advantages of Co-Transcriptional Splicing

    Get PDF
    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3β€² end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3β€² end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter

    Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    Get PDF
    Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression

    A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster

    Get PDF
    Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP–Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications
    • …
    corecore