277 research outputs found

    Targeted therapy in acute myeloid leukemia:current status and new insights from a proteomic perspective

    Get PDF
    Introduction: The biological heterogeneity of acute myeloid leukemia (AML) complicates personalized medicine. Individual prognosis is typically based on the presence of chromosomal and genetic lesions. Nevertheless, these classifications often lack a priori information about response to therapy. Since the protein expression landscape reflects the functional activity state of cells, we hypothesize that analyzing this can be used for the identification of protein activity markers to provide better risk stratification as well as may provide targeted therapeutic guidance in AML. Areas covered: Herein, we review recently new adopted drugs in the treatment for AML and discuss how quantitative proteomic techniques may contribute to better therapeutic selection in AML. Expert commentary: The net functional state of the cell is defined by the activity of protein within all the pathways that are active in the cell. Recognition of the proteomic profile of the leukemic blast could, therefore, complement current classification systems by providing a better a priori description of what pathways are important within a cell as a guide to the selection of therapy for the patient

    Epidermal growth factor receptor is expressed and active in a subset of acute myeloid leukemia

    Get PDF
    The epidermal growth factor receptor (EGFR) inhibitor erlotinib has been shown to induce complete remission of acute myeloid leukemia (AML) in two patients with concurrent lung cancer and raised attention for a role of EGFR in AML whereas a recent phase II clinical study with gefitinib in AML demonstrated a negative result on the outcome. However, from several studies, EGFR expression in AML is poorly defined and the role of EGFR in AML remains unclear. Herein, we report the results of EGFR expression in AML of large cohorts of adult and pediatric AML patients with the data of total protein and phosphorylation levels of EGFR. Our data conclude that there is the expression of EGFR at the protein level in a subset of AML, which was identified to be functionally active in similar to 15 % of AML patients. This suggests that future studies need to be conducted with a subset of AML patients characterized by high EGFR expression

    Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia

    Get PDF
    BackgroundAcute leukemia is an epigenetically heterogeneous disease. The intensity of treatment is currently guided by cytogenetic and molecular genetic risk classifications; however these incompletely predict outcomes, requiring additional information for more accurate outcome predictions. We aimed to identify potential prognostic implications of epigenetic modification of histone proteins, with a focus on H3K4 and H3K27 methylation marks in relation to mutations in chromatin, splicing and transcriptional regulators in adult-onset acute lymphoblastic and myeloid leukemia.ResultsHistone 3 lysine 4 di- and trimethylation (H3K4me2, H3K4me3) and lysine 27 trimethylation (H3K27me3) mark expression was evaluated in 241 acute myeloid leukemia (AML), 114 B-cell acute lymphoblastic leukemia (B-ALL) and 14T-cell ALL (T-ALL) patient samples at time of diagnosis using reverse phase protein array. Expression levels of the marks were significantly lower in AML than in B and T-ALL in both bone marrow and peripheral blood, as well as compared to normal CD34+ cells. In AML, greater loss of H3K27me3 was associated with increased proliferative potential and shorter overall survival in the whole patient population, as well as in subsets with DNA methylation mutations. To study the prognostic impact of H3K27me3 in the context of cytogenetic aberrations and mutations, multivariate analysis was performed and identified lower H3K27me3 level as an independent unfavorable prognostic factor in all, as well as in TP53 mutated patients. AML with decreased H3K27me3 demonstrated an upregulated anti-apoptotic phenotype. In ALL, the relative quantity of histone methylation expression correlated with response to tyrosine kinase inhibitor in patients who carried the Philadelphia cytogenetic aberration and prior smoking behavior.ConclusionThis study shows that proteomic profiling of epigenetic modifications has clinical implications in acute leukemia and supports the idea that epigenetic patterns contribute to a more accurate picture of the leukemic state that complements cytogenetic and molecular genetic subgrouping. A combination of these variables may offer more accurate outcome prediction and we suggest that histone methylation mark measurement at time of diagnosis might be a suitable method to improve patient outcome prediction and subsequent treatment intensity stratification in selected subgroups

    Peptide microarray of pediatric acute myeloid leukemia is related to relapse and reveals involvement of DNA damage response and repair

    Get PDF
    The majority of acute myeloid leukemia (AML) patients suffer from relapse and the exact etiology of AML remains unclear. The aim of this study was to gain comprehensive insights into the activity of signaling pathways in AML. In this study, using a high-throughput PepChipā„¢ Kinomics microarray system, pediatric AML samples were analyzed to gain insights of active signal transduction pathway. Unsupervised hierarchical cluster analysis separated the AML blast profiles into two clusters. These two clusters were independent of patient characteristics, whereas the cumulative incidence of relapse (CIR) was significantly higher in the patients belonging to cluster-2. In addition, cluster-2 samples showed to be significantly less sensitive to various chemotherapeutic drugs. The activated peptides in cluster-1 and cluster-2 reflected the activity of cell cycle regulation, cell proliferation, cell differentiation, apoptosis, PI3K/AKT, MAPK, metabolism regulation, transcription factors and GPCRs signaling pathways. The difference between two clusters might be explained by the higher cell cycle arrest response in cluster-1 patients and higher DNA repair mechanism in cluster-2 patients. In conclusion, our study identifies different signaling profiles in pediatric AML in relation with CIR involving DNA damage response and repair

    Heterogeneous Nuclear Ribonucleoprotein K Is Overexpressed in Acute Myeloid Leukemia and Causes Myeloproliferation in Mice via Altered

    Get PDF
    Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1ā€”a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP Kā€™s oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity

    Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias.

    Get PDF
    PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of \u3c1 x\u3e10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects
    • ā€¦
    corecore