16 research outputs found

    Functional role of the cytoplasmic domain of the integrin alpha 5 subunit

    Get PDF
    The purpose of this study was to explore the functional role of the cytoplasmic domain of the alpha subunit of the alpha 5/beta 1 integrin, a fibronectin receptor. Mutant CHO cells that express very low levels of endogenous hamster alpha 5 subunit (CHO clone B2) were transfected with an expression vector containing full-length or truncated human alpha 5 cDNAs to form chimeric human alpha 5/hamster beta 1 integrins. Three transfectants were examined: B2a27 expresses a full-length human alpha 5 subunit with 27 amino acids in the cytoplasmic domain; B2a10 expresses an alpha 5 with a 17-amino acid cytoplasmic truncation; B2a1 expresses an alpha 5 with a 26-amino acid truncation. Levels of alpha 5/beta 1 surface expression in B2a27 and B2a10 cells were similar to that in wild type CHO cells. The expression of alpha 5/beta 1 in B2a1 cells was less, amounting to 15-20% of WT levels, despite message levels that were three to five times greater than those of B2a27. The transfectants were used to examine the role of the alpha 5 cytoplasmic domain in cell adhesion, cell motility, cytoskeletal organization, and integrin-mediated tyrosine phosphorylation. The adhesion characteristics of B2a27 and B2a10 cells on fibronectin substrata were similar to each other and to wild type CHO cells. B2a1 cells displayed slight reductions in the strength and rate of adhesion to fibronectin. Cell motility in the presence of fibronectin was similar for B2a27, B2a10, and wild type CHO cells, while the B2a1 cells were substantially less motile. Comparable degrees of cell spreading and extensive organization of actin filaments were observed for B2a27, B2a10, and wild type CHO cells on fibronectin substrata. The B2a1 cells spread to a lesser degree, and some organization of actin was observed; the untransfected B2 cells remained round on fibronectin substrata and showed no actin reorganization. Since the reduced motility and cell spreading observed in the B2a1 cells might be due either to reduced surface expression of alpha 5/beta 1 or to the truncation in the alpha 5 cytoplasmic domain, we used flow cytometric cell sorting to select populations of B2a1 and B2a27 cells expressing similar levels of cell surface alpha 5. The deficits in spreading and motility were present in B2a1 cells expressing high levels of alpha 5. Thus the region of the alpha 5 cytoplasmic domain adjacent to the membrane seems to play an important role in cytoskeletal organization and cell motility. We also examined whether alpha subunit truncation would affect integrin- mediated tyrosine phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS

    The role of protein tyrosine phosphorylation in integrin-mediated gene induction in monocytes

    Get PDF
    Integrin-mediated cell adhesion, or cross-linking of integrins using antibodies, often results in the enhanced tyrosine phosphorylation of certain intracellular proteins, suggesting that integrins may play a role in signal transduction processes. In fibroblasts, platelets, and carcinoma cells, a novel tyrosine kinase termed pp125FAK has been implicated in integrin-mediated tyrosine phosphorylation. In some cell types, integrin ligation or cell adhesion has also been shown to result in the increased expression of certain genes. Although it seems reasonable to hypothesize that integrin-mediated tyrosine phosphorylation and integrin-mediated gene induction are related, until now, there has been no direct evidence supporting this hypothesis. In the current report, we explore the relationship between integrin- mediated tyrosine phosphorylation and gene induction in human monocytes. We demonstrate that monocyte adherence to tissue culture dishes or to extracellular matrix proteins is followed by a rapid and profound increase in tyrosine phosphorylation, with the predominant phosphorylated component being a protein of 76 kD (pp76). Tyrosine phosphorylation of pp76 and other monocyte proteins can also be triggered by incubation of monocytes with antibodies to the integrin beta 1 subunit, or by F(ab')2 fragments of such antibodies, but not by F(ab) fragments. The ligation of beta 1 integrins with antibodies or F(ab')2 fragments also induces the expression of immediate-early (IE) genes such as IL-1 beta. When adhering monocytes are treated with the tyrosine kinase inhibitors genistein or herbimycin, both phosphorylation of pp76 and induction of IL-1 beta message are blocked in a dose-dependent fashion. Similarly, treatment with genistein or herbimycin can block tyrosine phosphorylation of pp76 and IL-1 beta message induction mediated by ligation of beta 1 integrin with antibodies. These observations suggest that protein tyrosine phosphorylation is an important aspect of integrin-mediated IE gene induction in monocytes. The cytoplasmic tyrosine kinase pp125FAK, although important in integrin signaling in other cell types, seems not to play a role in monocytes because this protein could not be detected in these cells

    Short-Term Pulmonary Toxicity Assessment of Pre- and Post-incinerated Organomodified Nanoclay in Mice

    No full text
    Organomodified nanoclays (ONCs) are increasingly used as filler materials to improve nanocomposite strength, wettability, flammability, and durability. However, pulmonary risks associated with exposure along their chemical lifecycle are unknown. This study’s objective was to compare pre- and post-incinerated forms of uncoated and organomodified nanoclays for potential pulmonary inflammation, toxicity, and systemic blood response. Mice were exposed <i>via</i> aspiration to low (30 μg) and high (300 μg) doses of preincinerated uncoated montmorillonite nanoclay (CloisNa), ONC (Clois30B), their respective incinerated forms (I-CloisNa and I-Clois30B), and crystalline silica (CS). Lung and blood tissues were collected at days 1, 7, and 28 to compare toxicity and inflammation indices. Well-dispersed CloisNa caused a robust inflammatory response characterized by neutrophils, macrophages, and particle-laden granulomas. Alternatively, Clois30B, I-Clois30B, and CS high-dose exposures elicited a low grade, persistent inflammatory response. High-dose Clois30B exposure exhibited moderate increases in lung damage markers and a delayed macrophage recruitment cytokine signature peaking at day 7 followed by a fibrotic tissue signature at day 28, similar to CloisNa. I-CloisNa exhibited acute, transient inflammation with quick recovery. Conversely, high-dose I-Clois30B caused a weak initial inflammatory signal but showed comparable pro-inflammatory signaling to CS at day 28. The data demonstrate that ONC pulmonary toxicity and inflammatory potential relies on coating presence and incineration status in that coated and incinerated nanoclay exhibited less inflammation and granuloma formation than pristine montmorillonite. High doses of both pre- and post-incinerated ONC, with different surface morphologies, may harbor potential pulmonary health hazards over long-term occupational exposures
    corecore